[image:]

R Programming from Beginning to Expert
Published by Randy Fadler
July 2025

Contents
Executive Summary: Mastering R: From Fundamentals to Real-World Solutions	5
Chapter 1: Welcome to R	7
1.1 What is R and why it's essential today?	7
1.2 Installing R and RStudio	8
1.3 Navigating the RStudio interface	8
1.4 Overview of CRAN, packages, and repositories	9
1.5 Writing your first line of R code	10
Chapter 2: Language Fundamentals	11
2.1 Variables, assignment operators, and comments	11
2.2 Data types: numeric, character, logical	12
2.3 Type coercion and inspection	14
2.4 Arithmetic and logical operations	15
2.5 Running Example Introduction: “Customer Feedback Analyzer”	19
2.6 Wrap-up	20
Chapter 3: Control Flow and Functions	21
3.1 Conditional statements: if, else, switch	21
3.2 Looping constructs: for, while, repeat	24
3.3 Creating and calling functions	26
3.4 Apply family (apply, lapply, sapply) for data iteration	28
3.5 Wrap-up	31
Chapter 4: Data Structures & Manipulation	32
4.1 Vectors, lists, matrices, arrays	32
4.2 Data frames and tibbles	35
4.3 Indexing and subsetting techniques	36
4.4 Combining and reshaping data (cbind, rbind, pivot)	39
4.4.2 Reshaping Data with pivot_wider()	40
Wrap-up	46
Chapter 5: Data Wrangling with Tidyverse	47
5.1 Intro to dplyr, tidyr, stringr, readr	47
5.2 Filtering, sorting, grouping, and summarizing with dplyr	48
5.3 Cleaning text data and missing values with stringr and tidyr	52
5.4 Evolving our running example with real-world CSVs	55
Chapter 6: Data Visualization	58
6.1 Intro to ggplot2: grammar of graphics	58
6.2 Bar charts, histograms, boxplots, scatter plots	59
6.3 Customizing labels, themes, and aesthetics	62
6.4 Visual storytelling with customer feedback	64
Chapter 7: Statistical Analysis in R	67
7.1 Descriptive statistics	67
7.2 T-tests, ANOVA, chi-squared tests	69
7.3 Correlation and regression analysis	71
7.4 Visualizing distributions and confidence intervals	72
Chapter 8: Working with Dates & Strings	75
8.1 Date/time objects with lubridate	75
8.2 String manipulation with stringr	78
8.3 Real-world applications: timestamped reviews and feedback parsing	80
Chapter 9: Intermediate Functions & Environments	83
9.1 Anonymous and nested functions	83
9.2 Scope and environments	85
Chapter 10: Advanced Topics and Real-World Integration	89
10.1 Object-oriented programming in R (S3, S4, R6 systems)	89
10.2 Performance optimization and Rcpp	93
10.3 Connecting to external data sources	95
Chapter 11: Reproducibility, Reporting, and Collaboration	98
11.1 Reproducible research with R Markdown	98
Chapter 12: Building Interactive Applications and Scalable Solutions	104
12.1 Building interactive web applications with Shiny	104
Appendix A: R and RStudio Quick Reference	109
A.1 RStudio Interface Panes	109
A.2 Basic R Commands	109
A.3 dplyr Verbs Reference	110
Appendix B: Common R Errors and Troubleshooting	111
B.1 "could not find function "X""	111
B.2 "Error in filter(...): object 'X' not found" or "object 'X' not found"	111
B.3 "Error: data must be a data frame, or other object coercible by fortify(), not a numeric	111
B.4 "Error: unexpected 'token' in 'code'"	112
B.5 "Error in [.data.frame(data, , variable) : undefined columns selected"	112
B.6 "Error in file(file, "rt") : cannot open the connection"	112
B.7 "Error: removed X rows containing non-finite values (stat_bin)." (or similar warnings)	113
Appendix C: Recommended R Packages for Further Exploration	113
Appendix D: Glossary of Key Terms	114

[bookmark: _Toc203393917]Executive Summary: Mastering R: From Fundamentals to Real-World Solutions
"Mastering R: From Fundamentals to Real-World Solutions" is a comprehensive and practical guide designed for developers and data scientists seeking to harness the full power of the R programming language. In today's data-driven world, R stands out as an indispensable tool for statistical computing, data analysis, visualization, and machine learning, lauded for its open-source accessibility, vast ecosystem of packages, and robust capabilities. This book serves as a roadmap for readers to navigate the R landscape, from initial setup to advanced application development.
The journey begins with a foundational introduction to R and RStudio, covering installation, interface navigation, and the crucial concept of CRAN packages. Readers then dive into language fundamentals, exploring variables, data types, basic operations, and R's powerful vectorization, all while building a practical "Customer Feedback Analyzer" example. This hands-on approach continues through chapters dedicated to control flow structures (conditionals, loops) and function creation, including advanced techniques like anonymous functions and the apply family for efficient data iteration.
A significant portion of the book is dedicated to data structures and manipulation, meticulously detailing vectors, lists, matrices, arrays, and data frames (including modern tibbles). It emphasizes robust indexing, subsetting, and reshaping techniques using cbind, rbind, pivot_longer(), and pivot_wider(). The book then transitions to the Tidyverse ecosystem, focusing on essential packages like dplyr for filtering, sorting, grouping, and summarizing data, tidyr for handling data structure, stringr for text cleaning, and readr for efficient data import.
Data visualization is covered in-depth with ggplot2, guiding readers through the creation of various plot types (bar charts, histograms, boxplots, scatter plots) and mastering customization for effective visual storytelling. The analytical capabilities of R are then explored through statistical analysis, including descriptive statistics, common inferential tests (t-tests, ANOVA, chi-squared), correlation, and regression, complemented by techniques for visualizing distributions and confidence intervals. Practical skills for handling dates, times, and strings are developed using lubridate and stringr, crucial for processing real-world, timestamped feedback data.
Finally, the book elevates readers' skills with intermediate functions and environments, explaining scope, anonymous, and nested functions. It progresses to advanced topics, including R's Object-Oriented Programming systems (S3, S4, R6), strategies for performance optimization (vectorization, Rcpp integration), and connecting to external data sources like databases, web APIs, and web scraping. The concluding chapter champions reproducibility and collaboration through R Markdown for dynamic reporting and Git/GitHub for version control, ensuring analyses are transparent, shareable, and scalable.
By blending foundational theory with practical, real-world applications centered around the "Customer Feedback Analyzer," "Mastering R" equips readers with the expertise to confidently import, clean, analyze, visualize, and report on data using R. It prepares individuals not just to understand R, but to leverage it as a powerful tool for solving complex data challenges in both development and data science contexts.

[bookmark: _Toc203393918]Chapter 1: Welcome to R
Welcome to the world of R! Whether you are a seasoned developer or a data enthusiast, this chapter lays the groundwork for success with R. This chapter covers the basics: what R is, why it is crucial in today's data-driven world, and how to set everything up to begin coding.
[bookmark: _Toc203393919]1.1 What is R and why it's essential today?
R is a programming language, and a free software environment designed for statistical computing and graphics. Ross Ihaka and Robert Gentleman developed R in the 1990s, and it was first released in 2000. Its popularity has grown, especially in the last decade. According to intro2r.com, it is maintained by the R Development Core Team.
Why R?
· Open Source and Free: R is available under the GNU General Public License. This means it is free to use, distribute, and modify. This makes it accessible to individuals and organizations of all sizes.
· Built for Statistics: R is designed for statistical analysis, providing tools for basic descriptive statistics to advanced modeling and machine learning algorithms. Functions for linear regression, time series analysis, and statistical inference are readily available.
· Powerful Graphics: R excels in data visualization, allowing the creation of high-quality, customizable graphics for exploration and presentation. R provides the tools to bring data to life visually.
· Extensive Package Ecosystem: R's strength lies in its collection of user-contributed packages, which provide specialized functions and datasets. The Comprehensive R Archive Network (CRAN) hosts thousands of these packages, covering fields like bioinformatics, finance, and social sciences.
· Reproducibility: R promotes reproducible research practices. Writing code in scripts creates a clear and traceable record of analysis. Code can be shared with others, allowing them to replicate results and build upon the work.
· Active Community Support: R has a large community of users and developers. Ample support is available through online forums like Stack Overflow and dedicated websites when challenges arise.
[bookmark: _Toc203393920]1.2 Installing R and RStudio
Before programming in R, install R and RStudio, an Integrated Development Environment (IDE) that makes working with R more user-friendly and efficient.
1.2.1 Installing R
1. Visit CRAN: Open a web browser and go to The Comprehensive R Archive Network (CRAN).
2. Download R: Under the "Download and Install R" section, click on the link for the operating system (Windows, macOS, or Linux).
3. Choose the Latest Release: Select the latest release of R for the system.
4. Run the Installer: Open the installer file and follow the on-screen instructions. For most users, accepting the default settings will work.
1.2.2 Installing RStudio
1. Visit RStudio (Posit) Website: Go to the official RStudio download page.
2. Download RStudio Desktop: Choose the free "RStudio Desktop Open Source License" version.
3. Download the Installer: Click the "DOWNLOAD RSTUDIO DESKTOP" button for the operating system.
4. Run the Installer: Open the downloaded file and follow the installation instructions, typically accepting the default settings.
5. Launch RStudio: After installation, launch RStudio from the applications folder or desktop shortcut.
[bookmark: _Toc203393921]1.3 Navigating the RStudio interface
When opening RStudio, you'll see a multi-pane interface designed to streamline the R development workflow. While the layout is customizable, the default typically presents four main panes.
· Source Pane (Top-Left): This is the code editor where R scripts are written, edited, and saved (files with the .R extension). It features syntax highlighting, code completion, and tools to run selected lines or entire scripts.
· Console Pane (Bottom-Left): This is where R commands are executed, and the output of code is displayed. Commands can be typed directly into the console, but for longer or more complex code, it's better to write them in the Source Pane and send them to the console.
· Environment/History Pane (Top-Right):
. Environment Tab: This tab displays the objects (variables, datasets, functions) currently loaded in the R session.
. History Tab: This tab keeps a record of all the commands executed in the console.
· Files/Plots/Packages/Help Pane (Bottom-Right):
. Files Tab: Allows navigation of files and folders in the working directory.
. Plots Tab: Displays graphs or visualizations generated by the R code.
. Packages Tab: Lists all installed R packages and allows you to load them into the current session.
. Help Tab: Provides access to R's documentation system. Information about functions, datasets, and packages can be found here.
[bookmark: _Toc203393922]1.4 Overview of CRAN, packages, and repositories
R's functionality expands through its community, primarily through packages. A package is a collection of functions, data, and documentation that extends R's capabilities for specific tasks.
· CRAN (The Comprehensive R Archive Network): This is the primary repository for R packages. When a package is installed from CRAN, R retrieves it from one of the many CRAN mirror servers.
· Other Repositories: Packages can also be found on platforms like Bioconductor (for biology-related packages) or GitHub (often for development versions of packages or those that don't meet CRAN's requirements).
· Installing and Loading Packages:
. To install a package (i.e., download and save it to your computer), use the install.packages() function. For example, to install the tidyverse package (a popular collection of data science packages), you would run: install.packages("tidyverse").
. After installation, load the package into the current R session before using its functions. Use the library() function for this: library(tidyverse).
[bookmark: _Toc203393923]1.5 Writing your first line of R code
Let's write the first line of R code. Traditionally, the first program in any language is a "Hello, World!" program, and R is no exception.
1. Open an R Script: In RStudio, go to File > New File > R Script. A new blank script will open in the Source Pane.
2. Type Your Code: In the new script, type the following:
R
print("Hello, World!")

3. Run the Code: Place the cursor on the line and press Ctrl + Enter (or Cmd + Enter on a Mac).
4. Observe the Output: The output "Hello, World!" will appear in the Console Pane.
You have just executed the first R command. Values can also be assigned to variables (objects) in R using the assignment operator <-:
R
greeting <- "Hello, World!"
print(greeting)

This assigns the string "Hello, World!" to a variable named greeting, which then gets printed to the console.
1.6 Wrap-up
This chapter has provided an introduction to R and RStudio. You have learned what R is, why it's a valuable tool for data analysis, how to set up your environment, and how to execute your first lines of code. The next chapter will explore language fundamentals, covering variables, data types, and basic operations that form the building blocks of R programming. Practice is key, and experimenting with the code examples will solidify

[bookmark: _Toc203393924]Chapter 2: Language Fundamentals
In R, storing and categorizing information, along with performing operations, is necessary, as in any programming language. This chapter introduces variables, basic data types, and fundamental operations. These serve as the foundation for all R programming tasks. The "Customer Feedback Analyzer" example will also be introduced.
[bookmark: _Toc203393925]2.1 Variables, assignment operators, and comments
Variables
A variable (or object) in R is a name given to a storage location that holds a value. This value can be a single number, text, a collection of values, or a more complex data structure. When creating a variable, a value is assigned to it. This allows you to refer to that value by its name later in your code.
Assignment Operators
In R, the most common way to assign a value to a variable uses the assignment operator <-. This can be read as "gets" or "is assigned." The equals sign = can also be used for assignment, but <- is generally preferred for clarity and consistency, especially when assigning values within function calls [4].
Here's how it works:
R
Assigning a numeric value to a variable
customer_id <- 101

Assigning a character string to a variable
product_name <- "Wireless Earbuds"

Assigning a logical value
is_premium_customer <- TRUE

You can also assign the result of an operation
total_cost <- 25.50 * 3

After these assignments, the variables customer_id, product_name, is_premium_customer, and total_cost will appear in your RStudio Environment pane, showing their names and assigned values.
Comments
Comments are lines of code that R ignores. They explain the code, making it easier for yourself and others to understand what the code does. In R, comments begin with a hash symbol (#). Any text following the # on that line is considered a comment.
R
This is a single-line comment.
It explains the purpose of the next line of code.

Assign a customer rating (out of 5)
customer_rating <- 4.5 # This comment explains the '4.5'
R will execute the code, but ignore the comments.

Using comments effectively is crucial for writing readable and maintainable R scripts.
[bookmark: _Toc203393926]2.2 Data types: numeric, character, logical
R stores different kinds of data using various data types. Understanding these is fundamental because they dictate what operations you can perform on your data. R features several fundamental (atomic) data types, but for most data analysis tasks, you'll primarily work with three: numeric, character, and logical.
2.2.1 Numeric
Numeric is the default data type for numbers in R. It covers real numbers (decimals) and integers. R stores all numbers as double-precision floating-point numbers, which are capable of storing both integers and decimals.
R
An integer number
age <- 30
print(age)
class(age) # Check the data type

A decimal number
price <- 49.99
print(price)
class(price) # Check the data type

While R treats all numbers as numeric (double), you can explicitly specify an integer type by appending L to the number. This can be useful for memory optimization in very large datasets or when interacting with other programming languages or databases that differentiate between integers and floating-point numbers.
R
Explicitly storing an integer
product_quantity <- 10L
print(product_quantity)
class(product_quantity) # Will show "integer"

2.2.2 Character
The character data type stores text or strings. Character values are enclosed in either single quotes (') or double quotes ("). It's generally best practice to use double quotes consistently.
R
Storing a single word
feedback_type <- "Positive"
print(feedback_type)
class(feedback_type)

Storing a sentence
customer_comment <- "The product arrived quickly and exceeded expectations."
print(customer_comment)
class(customer_comment)

2.2.3 Logical
The logical data type stores boolean values: TRUE or FALSE. They are often the result of logical comparisons or used for conditional execution. R also recognizes T and F as shorthand for TRUE and FALSE, respectively, but it's safer and clearer to use the full words.
R
Result of a comparison
is_high_rating <- customer_rating > 4
print(is_high_rating)
class(is_high_rating)

Directly assigning a logical value
has_warranty <- TRUE
print(has_warranty)
class(has_warranty)

[bookmark: _Toc203393927]2.3 Type coercion and inspection
Understanding data types is crucial because R sometimes automatically converts data from one type to another (coercion), which can lead to unexpected results if not handled consciously.
Type Coercion
When you try to combine different data types into a single vector (which is a fundamental concept we'll explore more in Chapter 4), R will coerce all elements to the most flexible type to prevent data loss. The hierarchy is typically: logical -> numeric -> character [3].
R
Combining different types in a vector
mixed_data <- c(1, "apple", TRUE)
print(mixed_data)
class(mixed_data) # What do you expect here?

Combining numbers and logicals
numeric_logical_data <- c(10, FALSE, 20, TRUE)
print(numeric_logical_data)
class(numeric_logical_data) # What do you expect here?

In the first example, mixed_data will be coerced to character because character is the most flexible type. The number 1 becomes "1", and TRUE becomes "TRUE". In the second example, FALSE becomes 0, and TRUE becomes 1, resulting in a numeric vector.
You can also explicitly coerce data types using functions like as.numeric(), as.character(), and as.logical().
R
numeric_string <- "123"
converted_number <- as.numeric(numeric_string)
print(converted_number)
class(converted_number)

logical_number <- 0
converted_logical <- as.logical(logical_number)
print(converted_logical)
class(converted_logical)

Be careful when coercing:
bad_number_string <- "hello"
coerced_bad_number <- as.numeric(bad_number_string)
print(coerced_bad_number) # This will result in NA (Not Available) with a warning.

Type Inspection
Several functions help you inspect the data type of a variable:
· class(): Returns the class of an object (e.g., "numeric", "character", "logical").
· typeof(): Returns the internal R type of an object (e.g., "double", "character", "logical", "integer").
· is.numeric(), is.character(), is.logical(): These are logical tests that return TRUE if the object is of the specified type, and FALSE otherwise.
R
test_value <- 15.7
class(test_value)
typeof(test_value)
is.numeric(test_value)
is.character(test_value)

text_value <- "R is fun"
class(text_value)
is.character(text_value)

[bookmark: _Toc203393928]2.4 Arithmetic and logical operations
R is a powerful calculator, and it handles operations on entire vectors (collections of values) very efficiently. This concept is called vectorization, and it's a cornerstone of R programming.
2.4.1 Arithmetic Operations
Basic arithmetic operators work as expected:
	Operator
	Description
	Example

	+
	Addition
	5 + 3

	-
	Subtraction
	10 - 4

	*
	Multiplication
	6 * 7

	/
	Division
	20 / 5

	^ or **
	Exponentiation
	2^3 or 2**3

	%%
	Modulo (remainder)
	10 %% 3

	%/%
	Integer Division
	10 %/% 3

Vectorization in Action:
Operations are applied element-wise when performing arithmetic on vectors.
R
Create two numeric vectors
vector1 <- c(10, 20, 30)
vector2 <- c(2, 5, 1)

Element-wise addition
sum_vector <- vector1 + vector2
print(sum_vector) # Output: [1] 12 25 31

Element-wise multiplication
product_vector <- vector1 * vector2
print(product_vector) # Output: [1] 20 100 30

If vectors are of different lengths, R will recycle the shorter vector to match the length of the longer one. This can sometimes be useful but often indicates a mistake if the lengths are not multiples of each other, resulting in a warning [5].
R
Recycling example (no warning, 10 is recycled three times)
longer_vector <- c(1, 2, 3, 4, 5, 6)
shorter_vector <- c(10, 20)
result_recycled <- longer_vector + shorter_vector
print(result_recycled)

Recycling example (with warning)
vector_a <- c(1, 2, 3)
vector_b <- c(10, 20)
result_warning <- vector_a + vector_b # R will warn that the longer object length is not a multiple of the shorter object length.
print(result_warning)

2.4.2 Logical Operations
Logical operators compare values and return TRUE or FALSE. They are crucial for filtering data and controlling program flow.
	Operator
	Description
	Example

	==
	Equal to
	x == y

	!=
	Not equal to
	x != y

	<
	Less than
	x < y

	<=
	Less than or equal to
	x <= y

	>
	Greater than
	x > y

	>=
	Greater than or equal to
	x >= y

	&
	Logical AND (element-wise)
	x & y

	&&
	Logical AND (scalar, short-circuiting)
	x && y

	`
	`
	Logical OR (element-wise)

	`
	
	`

	!
	Logical NOT
	!x

Vectorization with Logical Operators:
R
Create a vector of customer ratings
ratings <- c(5, 4, 2, 5, 3, 4)

Which ratings are excellent (equal to 5)?
is_excellent <- ratings == 5
print(is_excellent) # Output: [1] TRUE FALSE FALSE TRUE FALSE FALSE

Which ratings are good or excellent (greater than or equal to 4)?
is_good_or_excellent <- ratings >= 4
print(is_good_or_excellent) # Output: [1] TRUE TRUE FALSE TRUE FALSE TRUE

Combining conditions: ratings that are good AND excellent
(this is tautological for single values, but illustrates combining conditions)
good_and_excellent <- (ratings >= 4) & (ratings == 5)
print(good_and_excellent) # Output: [1] TRUE FALSE FALSE TRUE FALSE FALSE

Applying logical NOT
not_excellent <- !(ratings == 5)
print(not_excellent) # Output: [1] FALSE TRUE TRUE FALSE TRUE TRUE

The && and || operators are typically used inside if statements and evaluate only the first element of each vector, stopping early if the outcome is already determined (short-circuiting) [2, 1]. For vector operations, & and | are the common choices.
[bookmark: _Toc203393929]2.5 Running Example Introduction: “Customer Feedback Analyzer”
To make the R learning journey more concrete, a "Customer Feedback Analyzer" will be built throughout this booklet. The goal is to process raw customer feedback data to extract insights, quantify sentiment, and visualize trends.
For now, let's start with a very simple representation of some initial feedback data using the variables and vectors just learned.
Imagine feedback was received for three product orders:
· Order 1001: "Excellent product, fast delivery!" (Rating: 5, Positive sentiment)
· Order 1002: "Average experience. The item was okay." (Rating: 3, Neutral sentiment)
· Order 1003: "Disappointed with the quality." (Rating: 2, Negative sentiment)
These pieces of information can be represented using vectors:
R
Store order IDs as a numeric vector (or integer if preferred)
order_ids <- c(1001, 1002, 1003)
print(order_ids)

Store customer feedback text as a character vector
feedback_text <- c(
 "Excellent product, fast delivery!",
 "Average experience. The item was okay.",
 "Disappointed with the quality."
)
print(feedback_text)

Store numerical ratings as a numeric vector
product_ratings <- c(5, 3, 2)
print(product_ratings)

Store sentiment categories as a character vector
sentiment <- c("Positive", "Neutral", "Negative")
print(sentiment)

Let's create a logical vector: were any ratings below 3?
is_low_rating <- product_ratings < 3
print(is_low_rating)

This initial setup demonstrates how to use the fundamental data types and vectors to hold pieces of customer feedback data. In later chapters, combining these related vectors into more structured data structures (like data frames) and performing more complex analyses will be explained.
[bookmark: _Toc203393930]2.6 Wrap-up
This chapter provides a foundational understanding of R's language fundamentals:
· How to create variables and assign values using <-.
· The importance of comments (#) for code readability.
· The primary data types: numeric, character, and logical.
· The concept of type coercion and how to inspect data types using functions like class() and is.numeric().
· Performing arithmetic and logical operations, understanding R's powerful vectorization capabilities.
· Started the "Customer Feedback Analyzer" running example by representing initial feedback data using vectors.
These building blocks are essential. In Chapter 3, how to control the flow of R programs and create reusable functions will be explored, further empowering your ability to write sophisticated R code.

[bookmark: _Toc203393931]Chapter 3: Control Flow and Functions
Code is rarely executed linearly from start to finish. Control flow mechanisms enable programs to make decisions and repeat tasks, while functions allow the creation of reusable blocks of code. Mastering these concepts is crucial for writing efficient, dynamic, and maintainable R scripts.
[bookmark: _Toc203393932]3.1 Conditional statements: if, else, switch
Conditional statements allow different code blocks to execute based on whether a condition is true or false.
3.1.1 if and else
The if statement evaluates a logical condition. If it is TRUE, the code block following if executes. Optionally, the else statement specifies a code block to run if the condition is FALSE.
Syntax:
R
if (condition) {
 # Code to execute if condition is TRUE
} else {
 # Code to execute if condition is FALSE (optional)
}

Example 1: Basic if statement
R
customer_rating <- 4

if (customer_rating >= 4) {
 print("Customer is satisfied.")
}

Explanation: If customer_rating is 4 or greater, the message "Customer is satisfied" is printed.
Example 2: if-else statement
R
customer_rating <- 2

if (customer_rating >= 4) {
 print("Customer is satisfied.")
} else {
 print("Customer needs attention.")
}

Explanation: Since customer_rating is not greater than or equal to 4, the code in the else block executes, printing "Customer needs attention."
Example 3: Chaining else if
Multiple conditions can be checked using else if. R evaluates conditions sequentially, and the first TRUE condition executes its block.
R
customer_rating <- 3

if (customer_rating == 5) {
 print("Excellent feedback!")
} else if (customer_rating >= 4) {
 print("Positive feedback.")
} else if (customer_rating >= 3) {
 print("Neutral feedback, needs review.")
} else {
 print("Negative feedback, urgent action required!")
}

Explanation: The code checks for a rating of 5, then a rating of 4 or higher. Since customer_rating is 3, neither of the first two conditions is met. The third condition, customer_rating >= 3, is TRUE, so "Neutral feedback, needs review" is printed.
ifelse(test, yes, no)
· test: A logical vector.
· yes: The value to return if test is TRUE.
· no: The value to return if test is FALSE.
For element-wise conditional logic on vectors, the ifelse() function is more efficient and concise than if-else statements within loops.
Example 4: Using ifelse() with customer ratings
R
product_ratings <- c(5, 3, 2, 4, 1)

feedback_category <- ifelse(product_ratings >= 4, "Positive/Good", "Negative/Needs Improvement")
print(feedback_category)

Explanation: This code categorizes each rating as "Positive/Good" if it's 4 or higher, or "Negative/Needs Improvement" otherwise. The result is a character vector with the corresponding categories for each rating.
3.1.2 switch
The switch() statement is ideal for handling multiple conditions based on a single expression or value, offering a more compact and readable alternative to long if-else if chains.
Syntax (using a string expression):
switch(expression, case1 = result1, case2 = result2, ..., default = default_result)
Example 5: Using switch() for sentiment analysis
R
sentiment_type <- "Neutral"

action_plan <- switch(sentiment_type,
 "Positive" = "Promote product, encourage reviews.",
 "Neutral" = "Investigate further, seek specific feedback.",
 "Negative" = "Contact customer, resolve issue immediately.",
 "Unknown" = "Needs manual classification." # Default case
)
print(action_plan)

Explanation: Based on the sentiment_type variable, switch() matches the string to one of the cases and returns the corresponding action plan. If no match is found, the value of the Unknown case is returned. According to Fiveable Library, the switch statement in R can sometimes be less efficient than well-structured if-else statements due to R's implementation.
[bookmark: _Toc203393933]3.2 Looping constructs: for, while, repeat
Loops automate repetitive tasks, executing a block of code multiple times. However, in R, it's often more efficient to use vectorized operations or apply family functions than explicit loops, especially for large datasets.
3.2.1 for loop
The for loop iterates over the elements of a sequence (like a vector or list), executing the code block once for each element.
Syntax:
R
for (variable in sequence) {
 # Code to execute for each element
}

Example 6: Iterating through customer feedback
R
feedback_ids <- c("FB001", "FB002", "FB003")

for (id in feedback_ids) {
 print(paste("Processing feedback ID:", id))
}

Explanation: The loop iterates through each id in the feedback_ids vector, printing a message for each one.
Example 7: Calculating average rating using a for loop (less efficient approach)
While possible, this approach is less efficient than vectorized operations for calculating statistics.
R
ratings <- c(5, 4, 2, 5, 3)
total_sum <- 0

for (rating in ratings) {
 total_sum <- total_sum + rating
}

average_rating <- total_sum / length(ratings)
print(paste("Average Rating:", average_rating))

More efficient vectorized approach:
print(paste("Average Rating (vectorized):", mean(ratings)))

Explanation: The loop iterates through ratings, adding each value to total_sum. After the loop, the average is calculated. This demonstrates a loop's functionality but highlights the benefits of R's built-in vectorized functions like mean().
3.2.2 while loop
A while loop repeatedly executes a block of code as long as a specified condition remains TRUE.
Syntax:
R
while (condition) {
 # Code to execute as long as condition is TRUE
}

Example 8: Processing feedback until a certain condition is met
R
feedback_queue <- 5 # Number of feedback items to process
processed_count <- 0

while (feedback_queue > 0) {
 processed_count <- processed_count + 1
 feedback_queue <- feedback_queue - 1
 print(paste("Processed", processed_count, "feedback items. Remaining:", feedback_queue))
}

Explanation: The loop continues as long as feedback_queue is greater than 0. In each iteration, processed_count increases, and feedback_queue decreases until the condition becomes FALSE.
3.2.3 repeat loop and break
The repeat loop executes a block of code indefinitely until a break statement is encountered within the loop's body. The break statement stops the loop's execution.
Syntax:
R
repeat {
 # Code to execute
 if (condition_to_break) {
 break # Exit the loop
 }
}

Example 9: Simulating feedback processing with a repeat loop
R
total_feedback_items <- 10
items_processed <- 0

repeat {
 items_processed <- items_processed + 1
 print(paste("Processing item", items_processed))

 if (items_processed >= total_feedback_items) {
 print("All feedback items processed!")
 break # Exit the loop once all items are processed
 }
}

Explanation: This loop runs continuously until items_processed reaches total_feedback_items, at which point the break statement terminates the loop.
[bookmark: _Toc203393934]3.3 Creating and calling functions
Functions are reusable blocks of code that perform specific tasks. Defining functions helps organize code, improves readability, and avoids repetition.
3.3.1 Creating a function
A function is defined using the function() keyword, followed by arguments in parentheses and the function body in curly braces {}.
Syntax:
R
function_name <- function(argument1, argument2 = default_value, ...) {
 # Function body: code to be executed
 # ...
 return(result) # Optional: returns a value
}

3.3.2 Calling a function
To use a function, simply type its name followed by the arguments (values passed to the function) in parentheses.
Example 10: Simple greeting function
R
greet <- function(name) {
 message <- paste("Hello,", name, "!")
 print(message)
}

Call the function
greet("Alice")

Explanation: The greet function takes one argument, name. When called with "Alice", it constructs a greeting message and prints it.
3.3.3 Argument defaults and return values
· Argument Defaults: Functions can have arguments with default values. If a user doesn't provide a value for such an argument, the default is used. This makes functions more flexible.
· Return Values: Functions can return a value using the return() statement. If return() is omitted, the function implicitly returns the value of the last evaluated expression.
Example 11: Function with default argument and return value
R
analyze_rating <- function(rating, threshold = 3) { # default threshold is 3
 if (rating > threshold) {
 return("Above average")
 } else if (rating == threshold) {
 return("Average")
 } else {
 return("Below average")
 }
}

Call with default threshold
result1 <- analyze_rating(rating = 4)
print(result1)

Call with custom threshold
result2 <- analyze_rating(rating = 2, threshold = 2.5)
print(result2)

Explanation: The analyze_rating function takes rating and threshold. threshold has a default of 3. The function returns a string indicating the rating's performance relative to the threshold. When rating is 4 and threshold is the default 3, it returns "Above average". When rating is 2 and threshold is explicitly set to 2.5, it returns "Below average".
[bookmark: _Toc203393935]3.4 Apply family (apply, lapply, sapply) for data iteration
The apply family functions are powerful and efficient alternatives to loops, especially when performing operations on elements of lists, vectors, or margins of arrays/matrices. They are often faster and result in cleaner code than explicit loops for many common tasks.
3.4.1 lapply()
Applies a function to each element of a list (or vector treated as a list), always returning a list.
Syntax:
lapply(X, FUN, ...)
· X: A list or vector.
· FUN: The function to apply.
· ...: Additional arguments to pass to FUN.
Example 12: Converting customer feedback text to lowercase
R
feedback_comments <- list(
 "Excellent product!",
 "Item was okay.",
 "Disappointed."
)

lowercase_comments <- lapply(feedback_comments, tolower)
print(lowercase_comments)

Explanation: lapply() applies the tolower() function to each string in the feedback_comments list, converting them to lowercase and returning the result as a list.
3.4.2 sapply()
A "simplifying" version of lapply(). It applies a function to each element of a list or vector and attempts to simplify the result to the most basic data structure possible, often a vector or matrix.
Syntax:
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
· X, FUN, ...: Same as lapply().
· simplify: If TRUE (default), sapply() attempts to simplify the result.
Example 13: Checking character count in feedback comments
R
feedback_comments <- c(
 "Excellent product!",
 "Item was okay.",
 "Disappointed."
)

char_counts <- sapply(feedback_comments, nchar)
print(char_counts)

Explanation: sapply() applies the nchar() function (which counts characters in a string) to each comment. Since the result for each comment is a single number, sapply() simplifies the output into a numeric vector.
3.4.3 apply()
Applies a function over the margins (rows or columns) of an array or matrix. It is commonly used for summarizing data across rows or columns of matrices or data frames.
Syntax:
apply(X, MARGIN, FUN, ...)
· X: An array or matrix.
· MARGIN: A vector indicating which margins to apply FUN over (1 for rows, 2 for columns, c(1,2) for both).
· FUN: The function to apply.
Example 14: Calculating summary statistics for numerical feedback data
R
Imagine we have a matrix of feedback scores for different product aspects
Rows: Different feedback items
Columns: Scores for Aspect A, Aspect B, Aspect C
feedback_scores_matrix <- matrix(c(
 5, 4, 3,
 4, 5, 4,
 3, 2, 3,
 5, 5, 5
), nrow = 4, byrow = TRUE, dimnames = list(
 paste("Item", 1:4),
 c("Aspect_A", "Aspect_B", "Aspect_C")
))
print(feedback_scores_matrix)

Calculate the mean score for each aspect (column)
mean_by_aspect <- apply(feedback_scores_matrix, 2, mean)
print(mean_by_aspect)

Calculate the sum of scores for each feedback item (row)
sum_by_item <- apply(feedback_scores_matrix, 1, sum)
print(sum_by_item)

Explanation:
· The first apply() call calculates the mean for each column (MARGIN = 2), representing the average score for each aspect across all feedback items.
· The second apply() call calculates the sum for each row (MARGIN = 1), representing the total score for each feedback item across all aspects.
[bookmark: _Toc203393936]3.5 Wrap-up
In this chapter, the foundational concepts of control flow and functions in R have been explored:
· Conditional statements (if, else, switch) enable decision-making in code based on conditions.
· Looping constructs (for, while, repeat) automate repetitive tasks, though vectorized operations are often more efficient in R.
· Functions streamline code by defining reusable blocks, with features like default arguments and explicit return values.
· The apply family (apply, lapply, sapply) provides powerful alternatives to loops for efficiently iterating over data structures like lists, vectors, and matrices [1.6.

[bookmark: _Toc203393937]Chapter 4: Data Structures & Manipulation
Chapter 2 introduced the atomic data types (numeric, character, logical) and briefly touched upon vectors, which store multiple elements of the same type. While vectors are the foundation, R offers a richer set of data structures to handle more complex and real-world data effectively. This chapter delves into these essential data structures and how to manipulate them.
[bookmark: _Toc203393938]4.1 Vectors, lists, matrices, arrays
4.1.1 Vectors
As discussed in Chapter 2>>, vectors are the most basic data structure in R, used to store a collection of elements of the same data type. Datamentor explains how to create vectors using functions like c(), seq(), and the colon operator (:). Operations on vectors are vectorized, meaning they apply element-wise, making R code concise and efficient. The index of vectors in R starts from 1.
R
Creating a numeric vector
product_prices <- c(29.99, 15.50, 89.00, 5.25)
print(product_prices)

Creating a character vector of product categories
product_categories <- c("Electronics", "Apparel", "Home Goods", "Accessories")
print(product_categories)

Vectorized operation
discounted_prices <- product_prices * 0.8 # 20% discount
print(discounted_prices)

4.1.2 Lists
Unlike vectors, lists are heterogeneous data structures, meaning they can store elements of different types and even different structures like vectors, matrices, or other lists within them. Think of a list as a container where each item can be something entirely different – a shopping list where one item is a quantity, another is a specific type of fruit, and a third is a note. A list in R is an object consisting of an ordered collection of objects known as its components.
R
Creating a list for a customer order
customer_order <- list(
 customer_name = "Alice",
 order_id = 1004,
 items = c("Laptop", "Mouse", "Keyboard"),
 quantities = c(1, 1, 1),
 total_amount = 1250.00,
 is_premium = TRUE
)
print(customer_order)

Accessing List Elements:
Elements can be accessed using double square brackets [[]] or the dollar sign $ notation if the elements are named.
R
Accessing by name
customer_name <- customer_order$customer_name
print(customer_name)

Accessing by position
first_item <- customer_order[[3]]
print(first_item)

4.1.3 Matrices
Matrices are two-dimensional, homogeneous data structures where all elements must be of the same type, arranged in rows and columns. They are essentially vectors with a dim attribute (dimensions: number of rows, number of columns). W3Schools explains how to create a matrix using the matrix() function by specifying the number of rows and columns.
R
Creating a matrix of sales figures for products over quarters
sales_data <- matrix(
 c(120, 150, 130, 180, 200, 190, 140, 170), # Data elements
 nrow = 4, # Number of rows
 ncol = 2, # Number of columns
 byrow = TRUE, # Fill by row (default is by column)
 dimnames = list(
 c("Q1", "Q2", "Q3", "Q4"), # Row names
 c("Product A", "Product B") # Column names
)
)
print(sales_data)

Accessing Matrix Elements:
Elements are accessed using square brackets [] with [row, column] indexing.
R
Accessing a single element (Q2 sales for Product A)
q2_prod_a_sales <- sales_data[2, 1]
print(q2_prod_a_sales)

Accessing an entire row (Q3 sales)
q3_sales <- sales_data[3,]
print(q3_sales)

Accessing an entire column (Product B sales)
product_b_sales <- sales_data[, 2]
print(product_b_sales)

4.1.4 Arrays
Arrays are generalizations of matrices to more than two dimensions. For example, a 3-dimensional array could store sales data across products, quarters, and regions. Like matrices, all elements within an array must be of the same data type.
R
Creating a 3D array: sales data for products (2), quarters (3), and regions (2)
region_sales <- array(
 c(10, 12, 15, 8, 11, 14, # Product A
 20, 25, 22, 18, 28, 23), # Product B
 dim = c(2, 3, 2), # Dimensions: 2 products, 3 quarters, 2 regions
 dimnames = list(
 c("Prod A", "Prod B"), # Dimension 1: Products
 c("Q1", "Q2", "Q3"), # Dimension 2: Quarters
 c("East", "West") # Dimension 3: Regions
)
)
print(region_sales)

Accessing Array Elements:
Indexing uses square brackets [] with [dimension1, dimension2, dimension3, ...].
R
Sales for Product A in Q1, East region
prod_a_q1_east <- region_sales[1, 1, 1]
print(prod_a_q1_east)

All sales for Q2 in the West region
q2_west_sales <- region_sales[, 2, 2]
print(q2_west_sales)

[bookmark: _Toc203393939]4.2 Data frames and tibbles
4.2.1 Data Frames
Data frames are the most common and versatile data structure for storing tabular data in R. Imagine a spreadsheet: each column can hold a different data type (e.g., numeric, character, logical), but all elements within a column must be of the same type. Each row represents an observation, and each column represents a variable. A data frame in R is made up of three components: data, rows, and columns. You can create a data frame using the data.frame() function.
R
Let's revisit our customer feedback data and structure it into a data frame
customer_feedback_df <- data.frame(
 OrderID = c(1001, 1002, 1003, 1004, 1005),
 FeedbackText = c(
 "Excellent product, fast delivery!",
 "Average experience. The item was okay.",
 "Disappointed with the quality.",
 "Great value for money, highly recommend.",
 "Broken upon arrival, very unhappy."
),
 Rating = c(5, 3, 2, 5, 1),
 Sentiment = c("Positive", "Neutral", "Negative", "Positive", "Negative"),
 IsVerified = c(TRUE, TRUE, FALSE, TRUE, TRUE)
)
print(customer_feedback_df)

4.2.2 Tibbles
Tibbles (from the tibble package, part of the Tidyverse) are an enhanced version of data frames, designed to be more modern and user-friendly, especially for data science workflows. They behave similarly to data frames but come with key improvements: Educative explains that tibbles have a more advanced print function that only displays the first ten rows and columns that fit on the screen, along with the data types of each column. Tibbles do not convert character strings to factors by default and are generally stricter, providing clearer error messages and preventing accidental data type changes or partial matching of names. You can create tibbles using tibble() or tribble().
First, install the tidyverse package if not already installed, then load the tibble library:
R
install.packages("tidyverse") # Uncomment and run if you haven't installed tidyverse
library(tibble)

Creating a tibble from vectors
customer_feedback_tbl <- tibble(
 OrderID = c(1001, 1002, 1003, 1004, 1005),
 FeedbackText = c(
 "Excellent product, fast delivery!",
 "Average experience. The item was okay.",
 "Disappointed with the quality.",
 "Great value for money, highly recommend.",
 "Broken upon arrival, very unhappy."
),
 Rating = c(5, 3, 2, 5, 1),
 Sentiment = c("Positive", "Neutral", "Negative", "Positive", "Negative"),
 IsVerified = c(TRUE, TRUE, FALSE, TRUE, TRUE)
)
print(customer_feedback_tbl)

Notice the cleaner printing style and the inclusion of data types under the column names.
[bookmark: _Toc203393940]4.3 Indexing and subsetting techniques
Accessing specific parts of your data structures is fundamental for analysis. R provides powerful indexing and subsetting methods using square brackets [] and, for lists and data frames, [[]] and $.
4.3.1 Positional Indexing
Using numbers to specify elements or ranges:
R
For vectors
my_vector <- c("A", "B", "C", "D", "E")
first_element <- my_vector[1]
print(first_element) # Output: "A"

range_elements <- my_vector[2:4]
print(range_elements) # Output: "B" "C" "D"

For matrices (row, column)
print(sales_data[1, 1]) # Q1, Product A sales

For data frames (row, column)
first_feedback <- customer_feedback_df[1,] # First row, all columns
print(first_feedback)

first_three_feedbacks <- customer_feedback_df[1:3,] # First three rows
print(first_three_feedbacks)

Select specific columns by position
selected_columns <- customer_feedback_df[, c(1, 3)] # OrderID and Rating
print(selected_columns)

4.3.2 Named Indexing
Using names to specify elements or columns:
R
For lists
customer_items <- customer_order$items
print(customer_items)

For data frames
ratings_column <- customer_feedback_df$Rating
print(ratings_column)

Alternatively for data frames (using double square brackets)
ratings_column_alt <- customer_feedback_df[["Rating"]]
print(ratings_column_alt)

Selecting multiple columns by name in a data frame
subset_df_by_name <- customer_feedback_df[, c("OrderID", "Sentiment")]
print(subset_df_by_name)

4.3.3 Logical Indexing
Using logical vectors (TRUE/FALSE) to select elements based on a condition:
R
For vectors: selecting high ratings
high_ratings_only <- product_ratings[product_ratings >= 4] # from vector in 4.1.1
print(high_ratings_only)

For data frames: selecting positive feedback
positive_feedback <- customer_feedback_df[customer_feedback_df$Sentiment == "Positive",]
print(positive_feedback)

Selecting reviews with low ratings AND verified customers
low_rating_verified <- customer_feedback_df[
 (customer_feedback_df$Rating < 3) & (customer_feedback_df$IsVerified == TRUE),
]
print(low_rating_verified)

4.3.4 Subsetting with subset() function
The subset() function provides a more readable way to subset data frames, especially for complex conditions.
R
Select feedback where rating is less than 3
low_rating_subset <- subset(customer_feedback_df, Rating < 3)
print(low_rating_subset)

Select feedback with a Rating of 5, only showing the OrderID and FeedbackText columns
excellent_feedback_details <- subset(
 customer_feedback_df,
 Rating == 5,
 select = c(OrderID, FeedbackText)
)
print(excellent_feedback_details)

[bookmark: _Toc203393941]4.4 Combining and reshaping data (cbind, rbind, pivot)
Real-world data often comes from various sources or needs to be structured in different ways for analysis. R provides functions to combine and reshape data structures.
4.4.1 Combining Data
· cbind() (Column Bind): Combines objects (vectors, matrices, or data frames) side-by-side as columns. All objects must have the same number of rows. Statology.org explains that cbind stands for column-bind and is used to combine vectors, matrices and data frames by column
· rbind() (Row Bind): Combines objects (vectors, matrices, or data frames) stacked on top of each other as rows. All objects must have the same number of columns and matching column names. IONOS states that the rbind() function is useful for combining data line by line, often used to add new information to an existing data frame
R
Example data for combining
additional_feedback <- data.frame(
 OrderID = c(1006, 1007),
 FeedbackText = c("Fast delivery, great product.", "Customer service was unhelpful."),
 Rating = c(4, 2),
 Sentiment = c("Positive", "Negative"),
 IsVerified = c(TRUE, FALSE)
)

Using rbind to add new rows to the existing customer feedback data frame
updated_feedback_df <- rbind(customer_feedback_df, additional_feedback)
print(updated_feedback_df)

Creating a separate data frame with additional details (e.g., product ID)
product_details <- data.frame(
 OrderID = c(1001, 1002, 1003, 1004, 1005, 1006, 1007),
 ProductID = c("P001", "P002", "P001", "P003", "P002", "P001", "P004")
)

Using cbind to add product details (assuming OrderIDs are aligned)
For more robust combining with non-aligned data, use merge() or join functions (Chapter 5)
combined_data_cbind <- cbind(updated_feedback_df, ProductID = product_details$ProductID)
print(combined_data_cbind)

[bookmark: _Toc203393942]4.4.2 Reshaping Data with pivot_wider()
While pivot_longer() converts data from a wide format to a long format, pivot_wider() performs the opposite operation. It takes data in a long format (where key-value pairs are stored across rows) and spreads it out into a wider format, increasing the number of columns and decreasing the number of rows. This is particularly useful when analyzing or visualizing data that needs to be summarized by categories or when comparing values across different groups.
To illustrate pivot_wider(), let's create a "long" version of our customer feedback data that records multiple feedback types for each customer over time.
First, create an example dataset that includes different feedback metrics (like 'Rating' and 'Sentiment_Score') for various customer interactions, along with the customer_id and interaction_date.
R
library(tidyverse)

Create a sample long-format dataset for customer feedback
long_feedback_data <- tibble(
 customer_id = c(1, 1, 2, 2, 3, 3),
 interaction_date = as.Date(c("2023-01-15", "2023-01-20", "2023-02-10", "2023-02-12", "2023-03-01", "2023-03-05")),
 metric = c("Rating", "Sentiment_Score", "Rating", "Sentiment_Score", "Rating", "Sentiment_Score"),
 value = c(4, 0.8, 3, 0.5, 5, 0.9)
)

print(long_feedback_data)

Explanation: In this long_feedback_data tibble, each row represents a specific metric (Rating or Sentiment_Score) measured for a particular customer on a given interaction date. This format is useful for some analyses, but it's not ideal if you want to see the Rating and Sentiment_Score side-by-side for each customer interaction.
To achieve this, pivot_wider() can be used. It requires two main arguments:
· names_from: The column whose unique values will become the new column names in the wider format.
· values_from: The column that contains the values to populate the new wide-format columns.
Let's use pivot_wider() to transform long_feedback_data:
R
Pivot the long data to a wider format
wide_feedback_data <- long_feedback_data %>%
 pivot_wider(
 names_from = metric, # Take the values from the 'metric' column to create new column names
 values_from = value # Fill the new columns with values from the 'value' column
)

print(wide_feedback_data)

Explanation: The pivot_wider() function reshaped the data frame. Now, Rating and Sentiment_Score are separate columns, and each row represents a unique customer interaction with both metrics present. This wide format is often more intuitive for direct comparison or for some statistical models that expect each variable in its own column.
Handling Multiple Value Columns
Sometimes, you might have multiple value columns that need to be spread across. pivot_wider() can handle this by specifying multiple columns in values_from.
Consider a scenario where the customer feedback data also includes 'Review_Length' in addition to 'Rating':
R
A long-format dataset with multiple value columns
long_feedback_metrics <- tibble(
 customer_id = c(1, 1, 2, 2, 3, 3),
 interaction_date = as.Date(c("2023-01-15", "2023-01-15", "2023-02-10", "2023-02-10", "2023-03-01", "2023-03-01")),
 metric = c("Rating", "Review_Length", "Rating", "Review_Length", "Rating", "Review_Length"),
 value = c(4, 50, 3, 30, 5, 120) # 'value' holds both rating and review length
)

print(long_feedback_metrics)

This data is not truly tidy because 'value' represents two different things.
However, for demonstration of pivot_wider, let's assume it's like this for a moment.

In a more realistic scenario, there would be separate value columns for Rating and Review_Length if they were collected separately. If you had data that looked like this:
R
Better representation for multiple measures
another_long_feedback <- tibble(
 customer_id = c(1, 1, 2, 2),
 interaction_date = as.Date(c("2023-01-15", "2023-01-15", "2023-02-10", "2023-02-10")),
 variable = c("Rating", "Review_Length", "Rating", "Review_Length"),
 measurement = c(4, 50, 3, 30)
) %>%
 pivot_wider(names_from = variable, values_from = measurement)

print(another_long_feedback)

Now, imagine we added a 'Source' column to this wide data
another_long_feedback_with_source <- tibble(
 customer_id = c(1, 1, 2, 2),
 interaction_date = as.Date(c("2023-01-15", "2023-01-15", "2023-02-10", "2023-02-10")),
 feedback_type = c("Rating", "Review_Length", "Rating", "Review_Length"),
 value_1 = c(4, 50, 3, 30),
 value_2 = c("App", "Web", "App", "Web") # Imagine value_2 is the source
)

print(another_long_feedback_with_source)

To pivot this, you might need to use `names_glue` or combine columns
For simplicity, let's stick to the simpler pivot_wider() for now,
but it's important to be aware of such complexities.

Handling Missing Values with values_fill
When pivoting, if a combination of names_from and id_cols doesn't exist for a particular value_from, pivot_wider() will by default fill the corresponding cell with NA (Not Available). You can specify a different fill value using the values_fill argument. You can learn more about handling missing values at tidyr's pivot vignette.
R
Create a dataset with some implicit missing values
sparse_feedback <- tibble(
 customer_id = c(1, 1, 2),
 metric = c("Rating", "Sentiment_Score", "Rating"),
 value = c(4, 0.8, 3)
)

print(sparse_feedback)

Pivot with default NA fill
wide_sparse_feedback_na <- sparse_feedback %>%
 pivot_wider(names_from = metric, values_from = value)

print(wide_sparse_feedback_na)

Pivot with a specific fill value (e.g., 0)
wide_sparse_feedback_filled <- sparse_feedback %>%
 pivot_wider(names_from = metric, values_from = value, values_fill = 0)

print(wide_sparse_feedback_filled)

Explanation: In the first pivot, customer 2 has no Sentiment_Score recorded, so it's filled with NA. In the second pivot, values_fill = 0 ensures that missing Sentiment_Score for customer 2 is replaced with 0, potentially indicating no recorded sentiment or a neutral sentiment depending on context.
Combining pivot_longer() and pivot_wider() for Complex Reshaping
The true power of these functions often becomes apparent when they are used together to perform more complex data transformations. You might find yourself pivoting data to a long format for easier manipulation, then pivoting it back to a wide format for a specific analysis or presentation.
For example, if you had multiple sets of measurements encoded in a wide format, you could use pivot_longer() to tidy the data, perform calculations, and then use pivot_wider() to get it into a format required by another tool or for reporting purposes.
4.4.3 Evolving our Running Example with pivot_longer() and pivot_wider()
Returning to the "Customer Feedback Analyzer," imagine that instead of having just a product_rating and sentiment column, you have yearly ratings from repeat customers in separate columns for each year:
R
Create a wider version of the customer feedback data for demonstration
customer_yearly_feedback <- tibble(
 customer_id = c(101, 102, 103),
 name = c("Alice", "Bob", "Charlie"),
 rating_2022 = c(4, 3, 5),
 rating_2023 = c(5, 4, NA), # Charlie didn't provide feedback in 2023
 sentiment_2022 = c("Positive", "Neutral", "Positive"),
 sentiment_2023 = c("Positive", "Neutral", NA)
)

print(customer_yearly_feedback)

This format is useful for seeing annual ratings side-by-side but not ideal for analyzing rating trends over time using visualization tools like ggplot2 (which we'll explore in Chapter 6). For that, you'd want a "longer" format.
First, let's use pivot_longer() to gather the rating_ and sentiment_ columns:
R
Load the tidyverse if not already loaded
library(tidyverse)

Pivot to a longer format
long_customer_feedback <- customer_yearly_feedback %>%
 pivot_longer(
 cols = starts_with("rating_") | starts_with("sentiment_"), # Select columns to pivot
 names_to = c(".value", "year"), # Split column names into 'metric' and 'year'
 names_sep = "_" # Use '_' as the separator for splitting names
)

print(long_customer_feedback)

Explanation:
· cols = starts_with("rating_") | starts_with("sentiment_"): This selects all columns starting with "rating_" or "sentiment_".
· names_to = c(".value", "year"): This is a powerful feature where .value indicates that part of the original column name (rating or sentiment) should become the new column name (i.e., rating and sentiment will become new columns) and year becomes a new column holding the year values.
· names_sep = "_": This specifies that the underscore character separates the metric and year components in the original column names. More on using names_sep to separate values into multiple columns is available here.
The long_customer_feedback data frame is now much tidier. Each row represents a single observation (a customer's feedback for a specific year), and each variable (customer ID, name, year, rating, sentiment) has its own column. This structure is excellent for plotting trends over time, like how a customer's average rating changed from 2022 to 2023.
Now, imagine a scenario where after analyzing the long_customer_feedback, a presentation wants to compare Alice's 2022 rating against her 2023 rating in a single row for a report. This requires pivoting back to a wider format using pivot_wider():
R
Pivot the long data back to a wider format (e.g., for reporting)
comparison_wide_feedback <- long_customer_feedback %>%
 pivot_wider(
 names_from = year, # Years become new column names
 values_from = c(rating, sentiment), # Both 'rating' and 'sentiment' values are spread
 names_glue = "{.value}_{year}" # Defines how new column names are constructed
)

print(comparison_wide_feedback)

Explanation:
· names_from = year: The unique values from the year column (2022, 2023) will become new column names.
· values_from = c(rating, sentiment): Both the rating and sentiment columns will have their values spread into the new wider columns.
· names_glue = "{.value}_{year}": This argument specifies how the new column names are created. .value refers to the names from values_from (i.e., rating and sentiment), and year refers to the names from names_from. This results in column names like rating_2022, sentiment_2022, rating_2023, sentiment_2023.
This transformed data frame is again in a wide format, but now it's focused on comparing annual metrics side-by-side for each customer, which could be beneficial for certain reporting tasks.
[bookmark: _Toc203393943]Wrap-up
Reshaping data with pivot_longer() and pivot_wider() from the tidyr package is an essential skill for any R user. As noted by Steven P. Sanderson II, MPH, these functions allow the transformation of data from wide to long and vice-versa, making it suitable for analysis and visualization. pivot_longer() is used to gather columns into rows, typically creating key-value pairs, which is ideal for tidying data and preparing it for functions that expect long formats (like ggplot2). pivot_wider() is used to spread rows into columns, which is useful for creating summary tables or preparing data for specific analytical tasks. Mastering these tools empowers flexible data manipulation, ensuring the data is in the optimal format for any task.
In the next chapter, Chapter 5, we will delve deeper into the tidyverse ecosystem, exploring more powerful functions for filtering, sorting, grouping, and summarizing data, further enhancing the ability to analyze and extract insights from the "Customer Feedback Analyzer" dataset.

[bookmark: _Toc203393944]Chapter 5: Data Wrangling with Tidyverse
You've learned the fundamentals of R programming and basic data manipulation. Now, it's time to supercharge your data wrangling skills with the tidyverse, a powerful collection of R packages designed for data science. The tidyverse packages work together seamlessly, following consistent design principles that make data transformation intuitive and efficient. This chapter focuses on the core tidyverse packages that will become your daily tools: dplyr, tidyr, stringr, and readr.
[bookmark: _Toc203393945]5.1 Intro to dplyr, tidyr, stringr, readr
The tidyverse isn't a single package but a family of packages. When you install and load tidyverse using install.packages("tidyverse") and library(tidyverse), you're loading a core set of packages that includes the ones covered in this chapter, among others like ggplot2 (for visualization) and tibble (a modern version of data frames). According to Study.com, the tidyverse is a collection of packages that help to import, organize, manipulate, and visualize data.
· dplyr (pronounced "dee-ply-er"): This package provides a grammar of data manipulation, offering a consistent set of "verbs" (functions) to perform common data transformations like filtering rows, selecting columns, creating new variables, and summarizing data.
· tidyr (pronounced "tie-dee-er"): This package focuses on tidying data, which means making it "long" or "wide" as needed. You encountered pivot_longer() and pivot_wider() in Chapter 4, which are key tidyr functions.
· stringr: This package simplifies working with strings (character data), making it easier to clean, extract, and manipulate text. Study.com notes that stringr is used for data preparation and to simplify working with strings.
· readr: This package provides fast and user-friendly functions for reading rectangular data (like CSV and TSV files) into R. It's often preferred over base R's read.csv() due to its speed and consistent output (tibbles). According to Read Rectangular Text Data, readr is designed to parse many types of data found in the wild while providing informative problem reports when parsing leads to unexpected results.
Throughout this chapter, the pipe operator (%>%) from the magrittr package (loaded with tidyverse) will be extensively used. This operator makes code more readable by passing the result of one function directly to the next, chaining operations together logically. OARC Stats reports that the tidyverse package helps in data import, management, and visualization, with dplyr, tidyr, magrittr, lubridate, and stringr being its key components.
[bookmark: _Toc203393946]5.2 Filtering, sorting, grouping, and summarizing with dplyr
dplyr provides a powerful and intuitive set of functions to manipulate data frames (or more specifically, tibbles). These are often referred to as "verbs" because they describe actions you perform on your data.
5.2.1 Filtering Rows with filter()
The filter() function allows you to select rows (observations) based on one or more conditions. It works similar to subsetting with [] but offers a cleaner syntax, especially with the pipe operator.
Syntax: dataframe %>% filter(condition1, condition2, ...)
R
library(tidyverse) # Ensure tidyverse is loaded

Let's use our long_customer_feedback from Chapter 4
long_customer_feedback <- tibble(
 customer_id = c(101, 102, 103, 101, 102, 103),
 name = c("Alice", "Bob", "Charlie", "Alice", "Bob", "Charlie"),
 year = c(2022, 2022, 2022, 2023, 2023, 2023),
 rating = c(4, 3, 5, 5, 4, NA),
 sentiment = c("Positive", "Neutral", "Positive", "Positive", "Neutral", NA)
)

Filter for feedback from a specific customer (e.g., Alice, customer_id = 101)
alice_feedback <- long_customer_feedback %>%
 filter(customer_id == 101)
print(alice_feedback)

Filter for feedback with a rating of 5 AND from the year 2023
excellent_2023_feedback <- long_customer_feedback %>%
 filter(rating == 5, year == 2023) # Separate conditions with commas for AND
print(excellent_2023_feedback)

Filter for feedback that is either "Positive" OR has a rating of 5
positive_or_excellent <- long_customer_feedback %>%
 filter(sentiment == "Positive" | rating == 5) # Use | for OR
print(positive_or_excellent)

Filter out rows where the rating is missing (NA)
feedback_with_ratings <- long_customer_feedback %>%
 filter(!is.na(rating))
print(feedback_with_ratings)

5.2.2 Sorting Rows with arrange()
The arrange() function allows you to reorder the rows of your data frame based on the values in one or more columns.
Syntax: dataframe %>% arrange(column1, column2, ...)
R
Arrange feedback by year in ascending order
feedback_by_year <- long_customer_feedback %>%
 arrange(year)
print(feedback_by_year)

Arrange feedback by customer ID (ascending) and then by rating (descending)
arranged_feedback <- long_customer_feedback %>%
 arrange(customer_id, desc(rating)) # Use desc() for descending order
print(arranged_feedback)

5.2.3 Grouping Data with group_by() and Summarizing with summarize()
The "split-apply-combine" strategy is fundamental in data analysis. The data are split into groups, a function is applied to each group, and the results are then combined. Karl Broman mentions that many data analysis tasks can be approached using the “split-apply-combine” paradigm: split the data into groups, apply some analysis to each group, and then combine the results. dplyr makes this easier with group_by() and summarize().
· group_by(): This function groups data by one or more categorical variables. Subsequent operations (like summarize()) will be applied to each group independently.
· summarize() (or summarise()): This function collapses each group into a single row summary, calculating aggregate statistics (like mean, sum, count, min, max) for each group.
Syntax: dataframe %>% group_by(grouping_variable) %>% summarize(new_column = aggregate_function(variable))
R
Calculate the average rating for each year
average_rating_by_year <- long_customer_feedback %>%
 group_by(year) %>%
 summarize(mean_rating = mean(rating, na.rm = TRUE)) # na.rm = TRUE handles NA values
print(average_rating_by_year)

Calculate the number of feedback entries and average rating for each customer
customer_summary <- long_customer_feedback %>%
 group_by(customer_id, name) %>% # Group by multiple columns
 summarize(
 total_feedback = n(), # n() counts the number of rows in each group
 avg_rating = mean(rating, na.rm = TRUE),
 min_rating = min(rating, na.rm = TRUE),
 max_rating = max(rating, na.rm = TRUE)
)
print(customer_summary)

Let's count how many positive, neutral, negative sentiments there are per year
sentiment_counts_by_year <- long_customer_feedback %>%
 filter(!is.na(sentiment)) %>% # Exclude NA sentiments
 group_by(year, sentiment) %>%
 summarize(count = n()) %>%
 arrange(year, desc(count))
print(sentiment_counts_by_year)

5.2.4 Creating/Modifying Columns with mutate()
The mutate() function allows adding new columns to a data frame or modifying existing ones based on calculations using other columns.
Syntax: dataframe %>% mutate(new_column = expression, another_new_column = another_expression, ...)
R
Add a new column indicating if the rating is above average
feedback_with_flag <- long_customer_feedback %>%
 mutate(is_above_average = rating > mean(rating, na.rm = TRUE))
print(feedback_with_flag)

Create a new column combining customer ID and year
feedback_with_id_year <- long_customer_feedback %>%
 mutate(customer_year_id = paste0("Cust", customer_id, "_", year))
print(feedback_with_id_year)

Let's create a categorized rating based on the numerical rating
categorized_feedback <- long_customer_feedback %>%
 mutate(
 rating_category = case_when(
 rating == 5 ~ "Excellent",
 rating == 4 ~ "Good",
 rating == 3 ~ "Average",
 rating < 3 ~ "Poor",
 TRUE ~ NA_character_ # Handle NA ratings and other cases
)
) %>%
 arrange(customer_id, year)
print(categorized_feedback)

5.2.5 Selecting Columns with select()
The select() function allows you to choose specific columns or exclude them from your data frame.
Syntax: dataframe %>% select(column1, column2, ...) or dataframe %>% select(-column_to_exclude)
R
Select only the customer ID, year, and rating columns
selected_cols <- long_customer_feedback %>%
 select(customer_id, year, rating)
print(selected_cols)

Select all columns EXCEPT the 'name' column
all_except_name <- long_customer_feedback %>%
 select(-name)
print(all_except_name)

Select a range of columns
range_selection <- long_customer_feedback %>%
 select(customer_id:year) # Select columns from customer_id to year, inclusively
print(range_selection)

Select columns based on patterns (using helper functions)
pattern_selection <- long_customer_feedback %>%
 select(starts_with("cust"), ends_with("t")) # Select columns starting with 'cust' or ending with 't'
print(pattern_selection)

[bookmark: _Toc203393947]5.3 Cleaning text data and missing values with stringr and tidyr
Real-world customer feedback often comes messy: inconsistent capitalization, extra spaces, special characters, and missing values. The stringr and tidyr packages are invaluable for cleaning these issues.
5.3.1 Text Cleaning with stringr
The stringr package provides a consistent and simple interface for common string manipulation tasks.
Let's imagine the raw feedback text contains inconsistencies:
R
raw_feedback_text <- c(
 " Excellent product, fast delivery! ",
 "Average experience. The item was okay.",
 "DISAPPOINTED with the quality.",
 "Great value for money (Highly Recommended)",
 "Buggy software. Needs improvements."
)

raw_feedback_df <- tibble(feedback = raw_feedback_text)
print(raw_feedback_df)

Remove leading/trailing whitespace
cleaned_whitespace <- raw_feedback_df %>%
 mutate(feedback_cleaned = str_trim(feedback))
print(cleaned_whitespace)

Convert to consistent casing (e.g., lowercase)
cleaned_case <- cleaned_whitespace %>%
 mutate(feedback_cleaned = str_to_lower(feedback_cleaned))
print(cleaned_case)

Remove specific patterns (e.g., text in parentheses)
cleaned_patterns <- cleaned_case %>%
 mutate(feedback_cleaned = str_remove_all(feedback_cleaned, "\\(.*?\\)")) # Removes text within parentheses
print(cleaned_patterns)

You can chain these operations together
fully_cleaned_feedback <- raw_feedback_df %>%
 mutate(
 feedback_cleaned = feedback %>%
 str_trim() %>%
 str_to_lower() %>%
 str_remove_all("\\(.*?\\)")
)
print(fully_cleaned_feedback)

Explanation:
· str_trim(): Removes whitespace from the beginning and end of strings.
· str_to_lower(): Converts strings to all lowercase. str_to_upper() is also available.
· str_remove_all(): Removes all occurrences of a specified pattern. The pattern "\\(.*?\\)" uses regular expressions to match any text enclosed in parentheses. Regular expressions are a powerful tool for pattern matching in text, but they have their own syntax. We'll touch on them more in Chapter 8.
5.3.2 Handling Missing Values with tidyr
Missing data (represented as NA) is a common challenge. tidyr provides functions to deal with them systematically.
R
data_with_na <- tibble(
 customer_id = c(101, 102, 103, 104),
 rating = c(5, 3, NA, 4),
 comment = c("Good", "Okay", NA, "Excellent")
)

print(data_with_na)

Drop rows with any NA values
complete_cases <- data_with_na %>%
 drop_na()
print(complete_cases)

Drop rows with NA only in specific columns (e.g., 'rating')
complete_ratings <- data_with_na %>%
 drop_na(rating)
print(complete_ratings)

Replace NA values with a specified value (e.g., 0 for ratings, "No comment" for text)
filled_na <- data_with_na %>%
 replace_na(list(rating = 0, comment = "No comment"))
print(filled_na)

Fill missing values from the previous or next observation (useful for sequential data)
Example: If a customer's rating is missing, fill it with their previous rating
sequential_data <- tibble(
 customer_id = c(101, 101, 102, 102, 102),
 year = c(2022, 2023, 2021, 2022, 2023),
 rating = c(4, NA, 3, 5, NA)
) %>%
 arrange(customer_id, year) # Important to sort first for fill()

print(sequential_data)

filled_sequential <- sequential_data %>%
 group_by(customer_id) %>% # Fill separately for each customer
 fill(rating, .direction = "down") # Fill NA ratings downwards
print(filled_sequential)

filled_sequential_up <- sequential_data %>%
 group_by(customer_id) %>%
 fill(rating, .direction = "up") # Fill NA ratings upwards
print(filled_sequential_up)

Explanation:
· drop_na(): Removes rows containing NA values. You can specify which columns to check for NAs.
· replace_na(): Replaces NA values with a given value. It's often used with a list when replacing NAs in multiple columns.
· fill(): Fills NA values in selected columns using the next or previous entry. This is useful for data where values are implicitly carried forward or backward. Remember to group_by() relevant categorical variables (like customer_id) before using fill() to ensure values are filled within groups and not across them.
[bookmark: _Toc203393948]5.4 Evolving our running example with real-world CSVs
The "Customer Feedback Analyzer" example can now be expanded by importing realistic customer feedback data. Instead of manually creating tibbles, the readr package allows reading data directly from files, such as CSVs.
Creating a Sample CSV File
To follow along, first create a CSV file named customer_feedback.csv and save it in your RStudio project's working directory.
1. Open a text editor (like Notepad, Sublime Text, or RStudio's text editor).
2. Paste the following data:
csv
customer_id,rating,comment,feedback_source,timestamp
1001,5,"Excellent product! Fast delivery.","Web Form","2023-01-15 10:30:00"
1002,3,"Average experience. The item was okay.","Email","2023-01-16 14:00:00"
1003,2,"Disappointed with the quality.","App Review","2023-01-17 09:15:00"
1004,5,"Great value for money. Highly recommend.","Web Form","2023-01-18 11:45:00"
1005,4,"Satisfied with the purchase.","Email","2023-01-19 16:20:00"
1006,1,"Buggy software. Needs improvements.","App Review","2023-01-20 08:00:00"
1007,5,"Fantastic support team!","Phone Call","2023-01-21 13:00:00"
1008,3,"Product was okay, but delivery was slow.","Web Form","2023-01-22 17:05:00"
1009,NA,"Customer did not leave a rating.","Email","2023-01-23 09:30:00"
1010,4,"Good, but missing a feature.","Web Form","2023-01-24 10:00:00"

3. Save the file as customer_feedback.csv in the same directory where your R script is located (or in a data subfolder, if you prefer, and adjust the path accordingly).
Importing Data with readr::read_csv()
The read_csv() function from the readr package is the go-to for importing comma-separated values. It automatically detects column types and provides helpful diagnostics.
R
library(tidyverse) # Loads readr as well

Read the CSV file into an R data frame (tibble)
feedback_data_raw <- read_csv("customer_feedback.csv")
print(feedback_data_raw)

Explanation:
When you run read_csv(), it will display a message in the console indicating how it parsed the data, showing the detected column types (e.g., col_double(), col_character(), col_datetime()). According to readr's documentation, it is designed to parse many types of data found in the wild while providing informative problem reports when parsing leads to unexpected results. This is a helpful feature of readr, allowing you to verify that the data types were imported as expected.
readr typically detects column types like col_double, col_character, and col_datetime(). While it is possible to override these, the defaults are usually sufficient.
Basic Exploration and Initial Cleaning of the Imported Data
After loading the data, it is necessary to begin with initial cleaning and exploration using the dplyr and tidyr functions.
R
View the structure of the imported data
glimpse(feedback_data_raw)

Perform initial cleaning and transformation steps
cleaned_feedback <- feedback_data_raw %>%
 # 1. Standardize text data in the 'comment' column
 mutate(
 comment = comment %>%
 str_trim() %>% # Remove leading/trailing whitespace
 str_to_lower() # Convert to lowercase for consistency
) %>%
 # 2. Fill missing ratings (NA) with a default value, e.g., 0 or the mean
 # Here, we'll replace NA ratings with 3 (representing "Average" or imputed neutral)
 replace_na(list(rating = 3)) %>%
 # 3. Create a new column indicating whether the feedback is 'Positive', 'Negative', or 'Neutral'
 mutate(
 sentiment_category = case_when(
 rating >= 4 ~ "Positive",
 rating == 3 ~ "Neutral",
 rating < 3 ~ "Negative",
 TRUE ~ "Unknown" # Should not happen after NA replacement, but good practice
)
) %>%
 # 4. Select and reorder columns for clarity
 select(customer_id, timestamp, feedback_source, rating, sentiment_category, comment) %>%
 # 5. Arrange data by timestamp
 arrange(timestamp)

print(cleaned_feedback)

Explanation:
This code demonstrates a data cleaning process:
1. Whitespace is removed and text in the comment column is converted to lowercase.
2. Missing rating values are replaced with 3.
3. A sentiment_category is created based on the rating.
4. Columns are selected and reordered.
5. Data is sorted by timestamp.
Wrap-up
In this chapter, you have learned to use tidyverse packages like dplyr, tidyr, stringr, and readr for data manipulation, cleaning, and importing real-world data like the customer feedback dataset. This provides a solid base for data analysis. Chapter 6 will focus on visualizing this data using ggplot2.

[bookmark: _Toc203393949]Chapter 6: Data Visualization
Data visualization is a crucial step in any data analysis workflow. It transforms raw data into easily digestible visual representations, revealing patterns, trends, and outliers that might be hidden in tables or summaries. In R, the ggplot2 package, part of the tidyverse, is the most popular and powerful tool for creating stunning and informative graphics. This chapter dives into the world of ggplot2, exploring its core principles and demonstrating how to create various plot types essential for analyzing and presenting customer feedback data. R for Data Science emphasizes that data visualization is a crucial component of data analysis.
[bookmark: _Toc203393950]6.1 Intro to ggplot2: grammar of graphics
ggplot2 is based on the Grammar of Graphics, a powerful framework developed by Leland Wilkinson that allows you to build any plot by combining independent components. Rather than being limited to predefined plots, you construct graphics layer by layer, mapping data variables to visual aesthetics.
The basic template for a ggplot2 plot involves these core components:
· ggplot(): Initializes a plot object and specifies the data frame to be used.
· aes() (Aesthetics): Defines how variables from your data are mapped to visual properties of the plot, such as the x-axis position, y-axis position, color, size, shape, or transparency.
· geom_ (Geometrics): Specifies the geometric objects (layers) used to represent the data, such as points (geom_point() for scatter plots), bars (geom_bar() for bar charts), lines (geom_line() for line graphs), or boxes (geom_boxplot() for box plots).
The power of ggplot2 comes from adding these layers using the + operator, creating a plot step-by-step.
Let's use the cleaned_feedback data frame created in Chapter 5 to illustrate these concepts.
R
library(tidyverse) # Ensure tidyverse (including ggplot2) is loaded

Recreate cleaned_feedback for continuity if not in current session
You should have saved customer_feedback.csv in your working directory.
feedback_data_raw <- read_csv("customer_feedback.csv")

cleaned_feedback <- feedback_data_raw %>%
 mutate(
 comment = comment %>%
 str_trim() %>%
 str_to_lower()
) %>%
 replace_na(list(rating = 3)) %>%
 mutate(
 sentiment_category = case_when(
 rating >= 4 ~ "Positive",
 rating == 3 ~ "Neutral",
 rating < 3 ~ "Negative",
 TRUE ~ "Unknown"
)
) %>%
 select(customer_id, timestamp, feedback_source, rating, sentiment_category, comment) %>%
 arrange(timestamp)

print(cleaned_feedback)

Basic ggplot2 structure:
Start by initializing the ggplot object with the data frame
Then map variables to aesthetics within aes()
Finally, add a geometric layer to specify how the data is plotted

Example: An empty plot with data and aesthetics defined (no geom yet)
This will show a blank canvas
ggplot(data = cleaned_feedback, aes(x = rating, y = customer_id))

To make it visible, we need to add a geom

[bookmark: _Toc203393951]6.2 Bar charts, histograms, boxplots, scatter plots
ggplot2 provides specific geom_ functions for common chart types. This section demonstrates some of the most frequently used ones, applying them to the customer feedback data. STHDA outlines how ggplot2 creates bar charts, which display the relationship between a numeric and a categorical variable.
6.2.1 Bar Charts
Bar charts are useful for displaying the distribution of categorical variables or comparing numerical values across different categories.
Use Case: Visualizing the count of feedback entries by feedback_source or sentiment_category.
R
Bar chart of feedback sources
bar_source <- cleaned_feedback %>%
 ggplot(aes(x = feedback_source)) +
 geom_bar(fill = "steelblue") # geom_bar automatically counts observations by default
print(bar_source)

Bar chart of sentiment categories
bar_sentiment <- cleaned_feedback %>%
 ggplot(aes(x = sentiment_category, fill = sentiment_category)) + # Map 'sentiment_category' to fill color
 geom_bar() +
 labs(title = "Distribution of Customer Sentiments") # Add a title
print(bar_sentiment)

Bar chart showing average rating by feedback source (requires geom_col with stat = "identity")
First, calculate the average rating per source
avg_rating_by_source <- cleaned_feedback %>%
 group_by(feedback_source) %>%
 summarize(mean_rating = mean(rating, na.rm = TRUE))

Now plot the average rating
bar_avg_rating <- avg_rating_by_source %>%
 ggplot(aes(x = feedback_source, y = mean_rating, fill = feedback_source)) +
 geom_col() + # geom_col expects pre-calculated y-values
 labs(
 title = "Average Rating by Feedback Source",
 y = "Average Rating",
 x = "Feedback Source"
)
print(bar_avg_rating)

6.2.2 Histograms
Histograms are used to visualize the distribution of a single numerical variable by dividing the data into bins and counting the number of observations in each bin. Appsilon provides examples of how to make stunning histograms in R.
Use Case: Understanding the distribution of rating values.
R
Histogram of product ratings
hist_rating <- cleaned_feedback %>%
 ggplot(aes(x = rating)) +
 geom_histogram(binwidth = 1, fill = "darkgreen", color = "white") + # Specify binwidth
 labs(
 title = "Distribution of Customer Ratings",
 x = "Rating (1-5)",
 y = "Count"
)
print(hist_rating)

Histograms are sensitive to binwidth. Experiment to find what best tells the story.
For example, wider bins might mask details, while narrower ones might show noise.

6.2.3 Boxplots
Boxplots display the distribution of a numeric variable across different categories, showing the median, quartiles, and potential outliers. You can learn how to create and customize a box plot using the ggplot2 package in R.
Use Case: Comparing the distribution of rating across different feedback_source categories.
R
Boxplot of ratings by feedback source
box_rating_source <- cleaned_feedback %>%
 ggplot(aes(x = feedback_source, y = rating, fill = feedback_source)) +
 geom_boxplot() +
 labs(
 title = "Rating Distribution by Feedback Source",
 x = "Feedback Source",
 y = "Rating"
)
print(box_rating_source)

6.2.4 Scatter Plots
Scatter plots are used to visualize the relationship between two numerical variables.
Use Case: While the current dataset doesn't have two continuous numerical variables for a perfect scatter plot example, we can illustrate by converting one variable or exploring potential relationships if we had more detailed data (e.g., time_spent_on_website vs rating). For demonstration, we can create a proxy using timestamp and rating if treating timestamp as a continuous measure of time progression.
R
Scatter plot of rating over time
scatter_time_rating <- cleaned_feedback %>%
 ggplot(aes(x = timestamp, y = rating, color = sentiment_category)) + # Map sentiment to color
 geom_point(alpha = 0.7) + # Add transparency to points
 labs(
 title = "Customer Ratings Over Time",
 x = "Date and Time of Feedback",
 y = "Rating"
)
print(scatter_time_rating)

Adding a trend line
scatter_time_rating_trend <- cleaned_feedback %>%
 ggplot(aes(x = timestamp, y = rating)) +
 geom_point(alpha = 0.7, aes(color = sentiment_category)) +
 geom_smooth(method = "lm", se = FALSE, color = "black") + # Add a linear model trend line
 labs(
 title = "Customer Ratings Over Time with Trend",
 x = "Date and Time of Feedback",
 y = "Rating"
)
print(scatter_time_rating_trend)

[bookmark: _Toc203393952]6.3 Customizing labels, themes, and aesthetics
ggplot2 allows extensive customization to make plots informative, visually appealing, and tailored to specific needs.
6.3.1 Adding Labels and Titles with labs()
The labs() function is used to set plot titles, subtitles, captions, and axis labels.
R
custom_labels_plot <- cleaned_feedback %>%
 ggplot(aes(x = sentiment_category, fill = sentiment_category)) +
 geom_bar() +
 labs(
 title = "Customer Sentiment Breakdown by Category",
 subtitle = "Based on Ratings from Customer Feedback Data",
 caption = "Data collected January 2023",
 x = "Sentiment Category",
 y = "Number of Customers"
)
print(custom_labels_plot)

6.3.2 Customizing Aesthetics
Aesthetics can be set globally for a geom_ or mapped to variables within aes().
R
Map color to feedback_source for the scatter plot
scatter_colored_by_source <- cleaned_feedback %>%
 ggplot(aes(x = timestamp, y = rating, color = feedback_source)) + # 'color' mapped to 'feedback_source'
 geom_point(size = 3, alpha = 0.8) + # Set point size and transparency globally
 labs(title = "Ratings Over Time, Colored by Source")
print(scatter_colored_by_source)

Change point shape and size based on a variable
custom_shape_size <- cleaned_feedback %>%
 ggplot(aes(x = timestamp, y = rating, color = sentiment_category, shape = feedback_source)) +
 geom_point(size = 3) + # You can also map size to a numeric variable
 labs(title = "Ratings Over Time, Colored by Sentiment, Shaped by Source")
print(custom_shape_size)

6.3.3 Using and Customizing Themes
Themes control the non-data components of a plot, like background color, fonts, gridlines, and legend appearance. R-Statistics.co provides a guide on customizing ggplot2 themes.
ggplot2 comes with several built-in themes (e.g., theme_minimal(), theme_bw(), theme_classic()) that provide a quick way to change the plot's overall appearance.
R
Apply a built-in theme (e.g., theme_minimal)
minimal_theme_plot <- custom_labels_plot +
 theme_minimal()
print(minimal_theme_plot)

Customize theme elements using theme()
custom_theme_plot <- custom_labels_plot +
 theme_bw() + # Start with a base theme
 theme(
 plot.title = element_text(size = 16, face = "bold", hjust = 0.5), # Center and bold title
 axis.title = element_text(size = 12, face = "italic"), # Italicize axis titles
 legend.position = "bottom", # Move legend to bottom
 panel.grid.major = element_line(linetype = "dashed", color = "lightgray"), # Customize gridlines
 plot.background = element_rect(fill = "honeydew") # Change background color
)
print(custom_theme_plot)

[bookmark: _Toc203393953]6.4 Visual storytelling with customer feedback
The goal of data visualization isn't just to make plots, but to tell a story about the data. Using the customer feedback data, let's create a visualization that highlights key insights. Our Coding Club suggests that data visualization can be used for storytelling with data.
Story: Customers using "App Review" are significantly more likely to leave negative feedback compared to those using "Web Form."
To investigate this, a bar chart can be used that shows the sentiment breakdown by feedback_source.
R
Calculate the percentage of each sentiment category per feedback source
sentiment_proportions <- cleaned_feedback %>%
 group_by(feedback_source, sentiment_category) %>%
 summarize(count = n()) %>%
 group_by(feedback_source) %>% # Group again to calculate percentages within each source
 mutate(proportion = count / sum(count)) %>%
 ungroup() # Ungroup for subsequent operations

print(sentiment_proportions)

Create a stacked bar chart showing sentiment distribution per source
sentiment_story_plot <- sentiment_proportions %>%
 ggplot(aes(x = feedback_source, y = proportion, fill = sentiment_category)) +
 geom_col(position = "stack") + # Stack the bars
 labs(
 title = "Sentiment Distribution by Feedback Source",
 subtitle = "App Reviews show a higher proportion of Negative feedback",
 x = "Feedback Source",
 y = "Proportion of Feedback",
 fill = "Sentiment"
) +
 scale_fill_manual(values = c("Negative" = "firebrick", "Neutral" = "goldenrod", "Positive" = "darkgreen")) + # Custom colors
 theme_minimal() +
 theme(
 plot.title = element_text(hjust = 0.5, face = "bold"),
 plot.subtitle = element_text(hjust = 0.5),
 legend.position = "bottom"
)
print(sentiment_story_plot)

Explanation: This plot clearly shows the proportion of positive, neutral, and negative feedback for each source. The taller red section for "App Review" immediately highlights the point about negative feedback, helping to visually convey the data story.
Wrap-up
This chapter introduced ggplot2, the essential R package for data visualization. You learned the fundamental principles of the Grammar of Graphics and how to create common plot types like bar charts, histograms, boxplots, and scatter plots. You also explored how to customize plot aesthetics, labels, titles, and themes to create visually compelling and informative graphics. Remember that visualization is not just about creating pretty pictures; it's about effectively communicating insights from your data, as demonstrated with the customer feedback example.
Chapter 7 will move beyond visualization into the realm of statistical analysis, showing how to perform common tests and build models in R.

[bookmark: _Toc203393954]Chapter 7: Statistical Analysis in R
After importing, cleaning, and visualizing the data, the next logical step is often to perform statistical analysis. R, being a language specifically designed for statistics, provides a vast array of tools to conduct various statistical tests and build models. This chapter introduces fundamental statistical concepts and shows how to implement them in R using the "Customer Feedback Analyzer" data as an example.
[bookmark: _Toc203393955]7.1 Descriptive statistics
Descriptive statistics summarize and describe the main features of a dataset. They provide simple summaries about the sample and the measures, helping to understand the distribution of variables numerically.
Basic descriptive statistics include:
· Measures of Central Tendency: These describe the center of the distribution (mean, median, mode).
· Measures of Dispersion: These describe the spread or variability of the data (range, variance, standard deviation, interquartile range). Bookdown explains different measures of dispersion, including the range, interquartile range, variance, and standard deviation.
Let's calculate some descriptive statistics for the rating column in the cleaned_feedback data. GitHub Pages provides a quick way to get a summary of a dataset in R using the summary() function, which includes the min, max, mean, median, and first and third quartiles.
R
library(tidyverse)

Ensure 'cleaned_feedback' is available from previous chapters
feedback_data_raw <- read_csv("customer_feedback.csv") # Assuming customer_feedback.csv is in your working directory

cleaned_feedback <- feedback_data_raw %>%
 mutate(
 comment = comment %>% str_trim() %>% str_to_lower()
) %>%
 replace_na(list(rating = 3)) %>%
 mutate(
 sentiment_category = case_when(
 rating >= 4 ~ "Positive",
 rating == 3 ~ "Neutral",
 rating < 3 ~ "Negative",
 TRUE ~ "Unknown"
)
) %>%
 select(customer_id, timestamp, feedback_source, rating, sentiment_category, comment) %>%
 arrange(timestamp)

Quick summary of the 'rating' column
summary(cleaned_feedback$rating)

Individual measures
mean_rating <- mean(cleaned_feedback$rating)
median_rating <- median(cleaned_feedback$rating)
sd_rating <- sd(cleaned_feedback$rating) # Standard deviation
var_rating <- var(cleaned_feedback$rating) # Variance
range_rating <- range(cleaned_feedback$rating) # Min and Max
iqr_rating <- IQR(cleaned_feedback$rating) # Interquartile Range

print(paste("Mean Rating:", round(mean_rating, 2)))
print(paste("Median Rating:", median_rating))
print(paste("Standard Deviation:", round(sd_rating, 2)))
print(paste("Variance:", round(var_rating, 2)))
print(paste("Range:", range_rating[1], "-", range_rating[2]))
print(paste("Interquartile Range:", round(iqr_rating, 2)))

You can also group and summarize to get descriptive stats by category
desc_stats_by_source <- cleaned_feedback %>%
 group_by(feedback_source) %>%
 summarize(
 mean_rating = mean(rating, na.rm = TRUE),
 median_rating = median(rating, na.rm = TRUE),
 sd_rating = sd(rating, na.rm = TRUE),
 count = n()
)
print(desc_stats_by_source)

[bookmark: _Toc203393956]7.2 T-tests, ANOVA, chi-squared tests
Inferential statistics uses sample data to make inferences about a larger population. This section explores several common inferential tests. The City University of New York explains that inferential statistics uses sample data to learn about the whole population.
7.2.1 T-tests
T-tests are used to compare the means of two groups to determine if they are significantly different from each other. There are several types:
· One-sample t-test: Compares the mean of a single sample to a known population mean (or a hypothesized value).
· Independent Samples t-test: Compares the means of two independent groups. Andrew Farina provides code for running an independent-samples t-test in R, including specifying the formula, data, and options for paired or Welch's t-test.
· Paired Samples t-test: Compares the means of two related groups (e.g., before-and-after measurements on the same individuals).
Example: Independent Samples T-test
Let's investigate if there is a significant difference in rating between "Web Form" and "App Review" feedback sources.
R
Prepare data for t-test: Filter for the two groups of interest
t_test_data <- cleaned_feedback %>%
 filter(feedback_source %in% c("Web Form", "App Review")) %>%
 select(feedback_source, rating)

Perform independent samples t-test
Formula: dependent_variable ~ independent_variable
t_test_result <- t.test(rating ~ feedback_source, data = t_test_data)
print(t_test_result)

The output of the t.test() includes the t-statistic, degrees of freedom (df), and the p-value. A p-value less than the chosen significance level (e.g., 0.05) suggests a significant difference between the means of the two groups. The conf.int shows the confidence interval for the difference in means. By default, R's t.test() performs Welch's t-test, which doesn't assume equal variances.
7.2.2 ANOVA (Analysis of Variance)
ANOVA compares the means of three or more groups to see if at least one group mean is significantly different.
Example: One-way ANOVA
Is there a significant difference in rating across the different feedback_source categories?
R
Ensure feedback_source is treated as a factor
cleaned_feedback$feedback_source <- as.factor(cleaned_feedback$feedback_source)

Perform one-way ANOVA
Formula: dependent_variable ~ independent_variable (factor)
anova_result <- aov(rating ~ feedback_source, data = cleaned_feedback)
summary(anova_result)

The ANOVA summary provides an F-statistic and a p-value. A p-value below the significance level indicates a significant difference in means among the feedback sources. If the ANOVA is significant, post-hoc tests (like Tukey HSD) can identify which specific groups differ.
7.2.3 Chi-squared Tests
Chi-squared tests examine relationships between categorical variables.
· Chi-squared Goodness-of-Fit Test: Compares observed frequencies to expected frequencies in a single categorical variable to test a hypothesized distribution.
· Chi-squared Test of Independence: Determines if two categorical variables are associated.
Example: Chi-squared Test of Independence
Is there an association between feedback_source and sentiment_category?
R
Create a contingency table (cross-tabulation) of the two categorical variables
contingency_table <- table(cleaned_feedback$feedback_source, cleaned_feedback$sentiment_category)
print(contingency_table)

Perform Chi-squared Test of Independence
chi_sq_result <- chisq.test(contingency_table)
print(chi_sq_result)

The output includes the chi-squared statistic, degrees of freedom, and the p-value. A p-value less than the significance level suggests a significant association between the two categorical variables.
[bookmark: _Toc203393957]7.3 Correlation and regression analysis
7.3.1 Correlation
Correlation measures the strength and direction of a linear relationship between two quantitative variables. The cor() function calculates the correlation coefficient, while cor.test() tests its significance.
R
For demonstration, let's create a hypothetical 'review_length' numeric variable
In a real scenario, this would come from your data (e.g., str_length(comment))
cleaned_feedback <- cleaned_feedback %>%
 mutate(review_length = str_length(comment))

Calculate Pearson correlation between rating and review_length
By default, cor() computes Pearson correlation.
cor_pearson <- cor(cleaned_feedback$rating, cleaned_feedback$review_length, use = "complete.obs") # 'use' handles NAs
print(paste("Pearson Correlation:", round(cor_pearson, 2)))

Calculate Spearman correlation (for non-parametric or ordinal data)
Use method="spearman".
cor_spearman <- cor(cleaned_feedback$rating, cleaned_feedback$review_length, method = "spearman", use = "complete.obs")
print(paste("Spearman Correlation:", round(cor_spearman, 2)))

Test for significance of Pearson correlation
cor_test_result <- cor.test(cleaned_feedback$rating, cleaned_feedback$review_length, method = "pearson")
print(cor_test_result)

Interpretation: The correlation coefficient ranges from -1 (strong negative linear relationship) to 1 (strong positive linear relationship), with values near 0 indicating a weak or no linear relationship. The cor.test() output provides the p-value to determine statistical significance.
7.3.2 Regression Analysis
Regression analysis models the relationship between a dependent variable and one or more independent variables. lm() is used to fit linear models.
· Simple Linear Regression: One independent variable.
· Multiple Linear Regression: Two or more independent variables.
Example: Simple Linear Regression
Can we predict rating based on review_length?
R
Perform simple linear regression
Formula: dependent_variable ~ independent_variable
lm_model <- lm(rating ~ review_length, data = cleaned_feedback)
summary(lm_model)

The summary shows coefficients for the intercept and predictor, with standard errors, t-values, and p-values to indicate significance. R-squared (Multiple R-squared) shows the proportion of the dependent variable's variance explained by the independent variable(s).
[bookmark: _Toc203393958]7.4 Visualizing distributions and confidence intervals
Visualizing statistical analysis results is crucial. Histograms and density plots assess variable distributions, helping check assumptions like normality. Boxplots visualize group differences.
R
Density plot of ratings, separated by sentiment category
density_rating_by_sentiment <- cleaned_feedback %>%
 ggplot(aes(x = rating, fill = sentiment_category)) +
 geom_density(alpha = 0.6) +
 labs(
 title = "Rating Distribution by Sentiment Category",
 x = "Rating",
 y = "Density"
) +
 scale_fill_manual(values = c("Negative" = "firebrick", "Neutral" = "goldenrod", "Positive" = "darkgreen"))
print(density_rating_by_sentiment)

Boxplot again, highlighting group differences
boxplot_rating_by_source <- cleaned_feedback %>%
 ggplot(aes(x = feedback_source, y = rating, fill = feedback_source)) +
 geom_boxplot() +
 labs(title = "Rating Distribution Across Feedback Sources")
print(boxplot_rating_by_source)

7.4.2 Visualizing Confidence Intervals
Confidence intervals show a range for the true population parameter and can be visualized with error bars or around regression lines.
R
Example 1: Visualize the mean rating with 95% confidence intervals per feedback source
First, calculate the mean and standard error per group
mean_ci_data <- cleaned_feedback %>%
 group_by(feedback_source) %>%
 summarize(
 mean_rating = mean(rating, na.rm = TRUE),
 se_rating = sd(rating, na.rm = TRUE) / sqrt(n()), # Standard Error
 upper_ci = mean_rating + 1.96 * se_rating, # Approx. 95% CI upper bound
 lower_ci = mean_rating - 1.96 * se_rating # Approx. 95% CI lower bound
)

print(mean_ci_data)

Plot with error bars
mean_ci_plot <- mean_ci_data %>%
 ggplot(aes(x = feedback_source, y = mean_rating, fill = feedback_source)) +
 geom_col() +
 geom_errorbar(aes(ymin = lower_ci, ymax = upper_ci), width = 0.2, color = "black") +
 labs(
 title = "Mean Rating with 95% Confidence Intervals by Source",
 y = "Mean Rating",
 x = "Feedback Source"
)
print(mean_ci_plot)

Example 2: Confidence Interval around a regression line (using geom_smooth)
(Re-using the timestamp vs rating example, assuming some linearity for demonstration)
regression_ci_plot <- cleaned_feedback %>%
 ggplot(aes(x = timestamp, y = rating)) +
 geom_point(alpha = 0.7) +
 geom_smooth(method = "lm", color = "blue", fill = "lightblue") + # Displays 95% CI by default
 labs(
 title = "Customer Ratings Over Time with Regression Line and CI",
 x = "Date and Time of Feedback",
 y = "Rating"
)
print(regression_ci_plot)

Wrap-up
This chapter covered essential statistical analysis techniques in R, including descriptive statistics, t-tests, ANOVA, chi-squared tests, and simple linear regression. You also learned to visualize distributions and confidence intervals. These skills are crucial for drawing robust conclusions from data.
Chapter 8 will cover working with dates, times, and strings for more advanced analysis.

[bookmark: _Toc203393959]Chapter 8: Working with Dates & Strings
In real-world data analysis, dates, times, and strings (textual data) are frequently encountered and often require specific handling. R provides robust tools for these tasks, with the lubridate package simplifying date-time operations and the stringr package offering consistent functions for string manipulation. This chapter delves into these powerful packages and applies them to the "Customer Feedback Analyzer" to extract deeper insights from timestamps and textual feedback. DataCamp explains how `parse_date_time` takes an input character or Date vector and returns an output of class POSIXct. Stack Overflow discusses using the anytime package in R for parsing dates with different formats.
[bookmark: _Toc203393960]8.1 Date/time objects with lubridate
While base R has some capabilities for working with dates and times (e.g., as.Date(), POSIXct, POSIXlt), the lubridate package makes these operations much more intuitive and user-friendly, handling various formats and time zone complexities with ease. UC Berkeley Statistics Department mentions that the base R `as.Date` function handles dates but not times, while POSIXct and POSIXlt handle dates and times with time zone control.
8.1.1 Creating Date and Datetime Objects
lubridate provides functions for parsing dates and times directly from character strings. These functions are named based on the order of year (y), month (m), day (d), hour (h), minute (m), and second (s) components in the string. The University of Virginia highlights that `lubridate`'s functions are named based on the order of month, day, and year components, e.g., `mdy()` for "May 11, 1996".
· ymd(): Parses dates like "2023-01-15" or "2023/01/15". The Comprehensive R Archive Network notes that `ymd()` parses dates with year first, followed by month and then day.
· mdy(): Parses dates like "01/15/2023".
· dmy(): Parses dates like "15-01-2023".
· For dates with time, add _h, _hm, or _hms (e.g., ymd_hms() for "2023-01-15 10:30:00"). The Comprehensive R Archive Network explains that for dates with time information, users can add `h`, `m`, and/or `s` to the function name, such as `ymd_hms()` for the most common datetime format.
R
library(tidyverse) # Ensure lubridate is loaded

Use the cleaned_feedback data frame from Chapter 5
feedback_data_raw <- read_csv("customer_feedback.csv")

cleaned_feedback <- feedback_data_raw %>%
 mutate(
 comment = comment %>% str_trim() %>% str_to_lower()
) %>%
 replace_na(list(rating = 3)) %>%
 mutate(
 sentiment_category = case_when(
 rating >= 4 ~ "Positive",
 rating == 3 ~ "Neutral",
 rating < 3 ~ "Negative",
 TRUE ~ "Unknown"
)
) %>%
 select(customer_id, timestamp, feedback_source, rating, sentiment_category, comment) %>%
 arrange(timestamp)

The 'timestamp' column is likely already parsed correctly by read_csv,
but if it were a character, this is how you'd explicitly convert it:
char_timestamp <- "2023-01-15 10:30:00"
datetime_object <- ymd_hms(char_timestamp)
print(datetime_object)
class(datetime_object)

char_date <- "January 15, 2023"
date_object <- mdy(char_date)
print(date_object)
class(date_object)

8.1.2 Extracting Date and Time Components
lubridate makes it easy to extract specific components from date-time objects using simple functions. The University of Virginia highlights that `lubridate` provides functions for every permutation of "m", "d", "y" to format dates, simplifying the extraction of date components.
R
Extract components from the 'timestamp' column
feedback_with_date_parts <- cleaned_feedback %>%
 mutate(
 year = year(timestamp),
 month = month(timestamp, label = TRUE), # 'label = TRUE' for abbreviated month names
 day = day(timestamp),
 wday = wday(timestamp, label = TRUE, abbr = TRUE), # Day of the week
 hour = hour(timestamp),
 minute = minute(timestamp),
 second = second(timestamp)
)

print(head(feedback_with_date_parts))

8.1.3 Date and Time Arithmetic
Performing calculations with dates and times, such as finding durations or adding/subtracting time units, is straightforward with lubridate.
· Durations: Exact time spans (e.g., number of seconds). Use dweeks(), dhours(), dminutes(), etc.
· Periods: Human-readable time spans that respect calendar boundaries (e.g., months have different numbers of days). Use weeks(), hours(), minutes(), etc. R for Data Science (2e) provides more details on working with periods and durations.
R
Calculate the duration since the earliest feedback entry
first_timestamp <- min(cleaned_feedback$timestamp)

feedback_with_duration <- cleaned_feedback %>%
 mutate(
 days_since_first_feedback = as.period(timestamp - first_timestamp, unit = "day"),
 hours_since_first_feedback = as.duration(timestamp - first_timestamp) / dhours(1)
)

print(head(feedback_with_duration))

Add or subtract time
future_date <- date_object + days(7)
print(paste("Date seven days from", date_object, "is", future_date))

Example: Feedback received within the first hour of a day (hypothetical)
feedback_first_hour <- cleaned_feedback %>%
 filter(hour(timestamp) < 1) # Using the hour() function extracted earlier

The cleaned_feedback tibble currently has no feedback within the first hour
Let's see some feedback during peak morning hours (e.g., 9 am to 11 am)
morning_feedback <- cleaned_feedback %>%
 filter(hour(timestamp) >= 9 & hour(timestamp) < 12)
print(morning_feedback)

[bookmark: _Toc203393961]8.2 String manipulation with stringr
Cleaning and analyzing textual data (strings) is crucial for understanding open-ended customer comments. The stringr package provides a consistent and user-friendly set of functions, all prefixed with str_, to simplify string manipulation. GitHub mentions that the `stringr` package focuses on the most important and commonly used string manipulation functions, while `stringi` provides a comprehensive set.
8.2.1 Detecting Patterns: str_detect()
str_detect() checks if a pattern exists within a string, returning TRUE or FALSE.
Use Case: Identify comments containing specific keywords related to product quality or service.
R
Check for comments mentioning "quality" or "buggy"
feedback_quality_issues <- cleaned_feedback %>%
 mutate(
 has_quality_issue = str_detect(comment, "quality|buggy"), # Use '|' for OR condition in regex
 has_delivery_issue = str_detect(comment, "delivery|shipping")
) %>%
 filter(has_quality_issue | has_delivery_issue) # Filter for either issue
print(feedback_quality_issues)

8.2.2 Extracting Information: str_extract() and str_extract_all()
str_extract() extracts the first match of a pattern, while str_extract_all() extracts all matches. These functions are often used with regular expressions (regex) to define the pattern. Bookdown explains that `str_extract()` and `str_extract_all()` functions extract substrings corresponding to a pattern.
Use Case: Extracting specific product mentions or error codes if they follow a pattern in comments.
R
Let's imagine comments sometimes mention product codes like "PROD-XYZ"
sample_comments <- c(
 "Issue with PROD-123. Buggy software.",
 "Great product PROD-456!",
 "No specific product mentioned.",
 "Defect in PROD-789 and also PROD-001."
)

product_code_data <- tibble(comment = sample_comments) %>%
 mutate(
 first_product_code = str_extract(comment, "PROD-[0-9]{3}"), # Extracts the first match
 all_product_codes = str_extract_all(comment, "PROD-[0-9]{3}") # Extracts all matches as a list
)
print(product_code_data)

8.2.3 Replacing and Modifying Strings: str_replace() and str_replace_all()
These functions replace the first or all occurrences of a pattern with new text.
Use Case: Masking sensitive information or standardizing terminology.
R
Replace "excellent" with "superb" in comments
feedback_standardized <- cleaned_feedback %>%
 mutate(
 comment_replaced = str_replace(comment, "excellent", "superb"),
 comment_replaced_all = str_replace_all(comment, "product", "item")
)

print(select(feedback_standardized, comment, comment_replaced, comment_replaced_all))

8.2.4 Splitting Strings: str_split() and str_split_fixed()
These functions split a string into multiple parts based on a delimiter or pattern. str_split() returns a list, while str_split_fixed() returns a matrix.
Use Case: Separating a customer's name from their email address or tags from a string.
R
Hypothetical: Split feedback source into main type and sub-type (if applicable)
feedback_with_source_parts <- cleaned_feedback %>%
 mutate(
 source_parts = str_split(feedback_source, " "), # Split by space
 first_source_word = str_split_fixed(feedback_source, " ", n = 2)[, 1] # Extract first word
)

print(select(feedback_with_source_parts, feedback_source, source_parts, first_source_word))

[bookmark: _Toc203393962]8.3 Real-world applications: timestamped reviews and feedback parsing
Combining lubridate and stringr allows for powerful analysis of timestamped text data like customer reviews.
Case Study: Analyzing Peak Feedback Times and Text Content
Objective: Determine if feedback sentiment varies at different times of the day or if specific keywords are more prevalent during certain hours.
1. Extract Time-of-Day: Use lubridate to get the hour or part of the day.
2. Analyze Sentiment by Time: Use dplyr to group and summarize.
3. Identify Keywords by Time: Use stringr to detect patterns and count occurrences by time.
R
1. Extract hour of the day and categorize into shifts
feedback_by_time <- cleaned_feedback %>%
 mutate(
 feedback_hour = hour(timestamp),
 time_shift = case_when(
 feedback_hour >= 6 & feedback_hour < 12 ~ "Morning",
 feedback_hour >= 12 & feedback_hour < 18 ~ "Afternoon",
 feedback_hour >= 18 & feedback_hour < 24 ~ "Evening",
 TRUE ~ "Night"
) %>% factor(levels = c("Morning", "Afternoon", "Evening", "Night")) # Order factors
)

2. Analyze sentiment distribution by time shift
sentiment_by_shift <- feedback_by_time %>%
 group_by(time_shift, sentiment_category) %>%
 summarize(count = n(), .groups = 'drop') %>%
 group_by(time_shift) %>%
 mutate(proportion = count / sum(count)) %>%
 ungroup()

print(sentiment_by_shift)

Visualize sentiment distribution by time shift
sentiment_by_shift_plot <- sentiment_by_shift %>%
 ggplot(aes(x = time_shift, y = proportion, fill = sentiment_category)) +
 geom_col(position = "stack") +
 labs(
 title = "Customer Sentiment by Time of Day",
 x = "Time Shift",
 y = "Proportion of Feedback",
 fill = "Sentiment"
) +
 scale_fill_manual(values = c("Negative" = "firebrick", "Neutral" = "goldenrod", "Positive" = "darkgreen")) +
 theme_minimal()
print(sentiment_by_shift_plot)

3. Identify keywords by time shift (e.g., are "buggy" comments more frequent at night?)
buggy_comments_by_shift <- feedback_by_time %>%
 mutate(is_buggy = str_detect(comment, "buggy|improvements")) %>%
 group_by(time_shift) %>%
 summarize(
 total_comments = n(),
 buggy_count = sum(is_buggy, na.rm = TRUE),
 proportion_buggy = buggy_count / total_comments
)
print(buggy_comments_by_shift)

This analysis helps identify operational patterns related to customer experience. For instance, if Negative sentiment spikes during Night shifts, it might indicate insufficient support coverage or product performance issues during those hours.
Wrap-up
This chapter equipped you with essential tools for handling two pervasive data types: dates and times using lubridate, and strings using stringr. You learned how to parse, extract components, perform arithmetic, detect patterns, extract specific information, replace text, and split strings. The "Customer Feedback Analyzer" example demonstrated the practical application of these skills in processing timestamped reviews and extracting valuable insights from textual data.
These capabilities are fundamental for robust data cleaning, preparation, and analysis, especially when working with real-world, often messy, datasets. Building on this, Chapter 9 will delve into intermediate programming concepts, including functions and environments, to further enhance coding skills in R.

[bookmark: _Toc203393963]Chapter 9: Intermediate Functions & Environments
So far, you've mastered the basics of R, including data structures, manipulation with dplyr and tidyr, visualization with ggplot2, and handling dates and strings. This chapter elevates your R programming skills by diving into more advanced concepts surrounding functions and the crucial topic of environments and scoping. Understanding these concepts is essential for writing efficient, reusable, and debuggable R code, enabling more complex data analysis workflows.
[bookmark: _Toc203393964]9.1 Anonymous and nested functions
Functions are fundamental building blocks in R, allowing you to encapsulate code for reusability. Beyond the standard named functions defined with function(), R also offers anonymous and nested functions, providing flexibility for specific programming patterns.
9.1.1 Anonymous Functions
An anonymous function is a function defined and used without assigning it a name. They are often used for short, single-purpose operations within another function call, especially with functions that apply a function to elements or groups (like lapply, sapply, or functions within the purrr package, which is also part of the tidyverse).
Scenario: Suppose you have a list of numerical vectors and want to calculate the square root of each number, but only if the number is positive.
R
A list of numeric vectors
data_list <- list(
 set1 = c(4, 9, -1, 16),
 set2 = c(25, 0, 36),
 set3 = c(-5, 100)
)

Using an anonymous function with lapply to apply a custom operation to each element
The anonymous function takes 'x' as input, applies the sqrt if x >= 0, else returns NA
result_sqrt_positive <- lapply(data_list, function(x) {
 ifelse(x >= 0, sqrt(x), NA)
})

print(result_sqrt_positive)

Explanation:
The function(x) { ifelse(x >= 0, sqrt(x), NA) } is an anonymous function. It's defined directly as an argument to lapply without being assigned to a variable. It processes each element x from the data_list, calculating the square root only for positive numbers and returning NA otherwise.
Anonymous functions streamline code by avoiding the need to create and manage many small, named functions that are only used once.
9.1.2 Nested Functions
A nested function (or inner function) is a function defined inside another function (the outer function). It has access to the variables of its enclosing function's environment (lexical scoping), even after the outer function has finished executing. This concept is powerful for creating functions that are factories for other functions, or for encapsulating helper logic.
Scenario: Create a function that generates another function to calculate a "weighted rating" based on different importance factors.
R
Outer function: creates a weighting function
create_weighted_rating_calculator <- function(weight_comment = 0.5, weight_source = 0.3, weight_base_rating = 0.2) {
 # Inner (nested) function: calculates the weighted rating
 weighted_rating_calculator <- function(base_rating, comment_length, is_premium_source) {
 # Accesses weights from the outer function's environment
 weighted_value <- (base_rating * weight_base_rating) +
 (comment_length * weight_comment) +
 (is_premium_source * weight_source)
 return(weighted_value)
 }
 return(weighted_rating_calculator) # Return the inner function
}

Use the outer function to create a specific weighting function
This function assigns higher weight to comment length
my_custom_calculator <- create_weighted_rating_calculator(weight_comment = 0.6, weight_source = 0.2, weight_base_rating = 0.2)

Use the generated function
For demonstration, assume comment_length and is_premium_source are derived from feedback
rating_val <- 4
comment_len_val <- 50 # Hypothetical derived value
is_premium_val <- 1 # 1 for premium source, 0 otherwise

calculated_weighted_rating <- my_custom_calculator(rating_val, comment_len_val, is_premium_val)
print(paste("Calculated weighted rating:", calculated_weighted_rating))

Create another weighting function with different weights
another_calculator <- create_weighted_rating_calculator(weight_comment = 0.3, weight_source = 0.5, weight_base_rating = 0.2)
calculated_another_rating <- another_calculator(rating_val, comment_len_val, is_premium_val)
print(paste("Calculated another weighted rating:", calculated_another_rating))

Explanation:
create_weighted_rating_calculator is the outer function. It takes weighting parameters and returns the weighted_rating_calculator function. The key is that weighted_rating_calculator "remembers" the weight_comment, weight_source, and weight_base_rating values from the environment in which it was created, even after create_weighted_rating_calculator has finished. This concept is closely tied to closures and R's lexical scoping rules.
[bookmark: _Toc203393965]9.2 Scope and environments
Understanding scope and environments is fundamental to comprehending how R finds the values associated with variables and functions.
9.2.1 Environments
In R, an environment is a collection of named objects (variables, functions, etc.). Every R session starts with a global environment, which contains all the objects created at the console or loaded from scripts. When a function is called, a new environment is created for that function's execution.
Environments form a hierarchy:
· Global Environment: The top-level environment where objects defined interactively or in scripts are stored.
· Package Environments: When a package is loaded (e.g., library(dplyr)), its functions and data are placed in their own environments, typically attached to the search path.
· Function Environments: Each time a function is called, it creates a new environment to store its local variables and arguments. This environment's parent is typically the environment where the function was created (not necessarily where it was called).
R
You can view the current environment and its parent
current_env <- environment()
print(current_env)
print(parent.env(current_env))

Objects in the global environment
global_var <- "I'm in the global environment"

my_function <- function() {
 local_var <- "I'm local to my_function"
 print(global_var) # Can access global_var due to search path
 print(local_var)
 # environment() here refers to the environment *inside* my_function
 print(environment())
 print(parent.env(environment()))
}

my_function()

Trying to access local_var outside the function will result in an error
print(local_var) # Error: object 'local_var' not found

Explanation:
When my_function() is called, a new environment is created for it. Inside this environment, local_var is defined. The function can still find global_var because R searches up the chain of parent environments (the search path) until it finds a matching object name. Once my_function() finishes, its local environment and local_var are typically removed.
9.2.2 Scoping Rules
R uses lexical scoping (also known as static scoping). This means that a function's search for the value of a variable depends on where the function was defined (its parent environment), not where it was called.
R
x <- 10 # Global x

my_outer_function <- function() {
 x <- 20 # x local to my_outer_function
 my_inner_function <- function() {
 print(x) # Which x will this see?
 }
 my_inner_function()
}

my_outer_function() # Output: 20

Now, define another function at the global level
another_inner_function <- function() {
 print(x) # Which x will this see?
}

another_inner_function() # Output: 10

Explanation:
· When my_inner_function is called inside my_outer_function, it finds x within my_outer_function's environment (where my_inner_function was defined), not the global x.
· another_inner_function was defined in the global environment, so when it searches for x, it finds the global x first.
This distinction is crucial: a function carries its definition environment with it, determining how it resolves variable names. This ensures predictable behavior, as a function will always find variables in the same way, regardless of where or when it's executed.
Understanding environments and scoping is particularly important when working with closures (like the nested function example earlier), S3 and S4 classes (which aren't covered here but rely heavily on these concepts), and when debugging complex R code where variables might be unexpectedly shadowed or unavailable.
Wrap-up
Chapter 9 moved beyond the basic operations to introduce intermediate programming concepts vital for becoming an effective R programmer. You explored:
· Anonymous Functions: Creating and using single-purpose functions on the fly within other function calls.
· Nested Functions: Defining functions within functions to create specialized tools and leverage lexical scoping.
· Environments and Scope: Understanding how R stores objects and resolves variable names based on where functions are defined (lexical scoping).
These concepts lay the foundation for writing more sophisticated, modular, and maintainable R code. They are particularly relevant when building custom functions, working with advanced R packages, or developing larger R projects. The next steps in your R journey might involve exploring object-oriented programming in R (S3, S4, R6 systems), package development, or diving into specific advanced topics based on your field of interest.

[bookmark: _Toc203393966]Chapter 10: Advanced Topics and Real-World Integration
Having built a solid foundation in R programming, data manipulation, and visualization, this chapter expands into more specialized and advanced topics. It covers how R can be used with object-oriented programming paradigms, how to optimize code for performance, and how to connect to external data sources beyond simple CSV files. These skills are crucial for developing robust, efficient, and scalable R solutions for complex real-world problems.
[bookmark: _Toc203393967]10.1 Object-oriented programming in R (S3, S4, R6 systems)
While R's primary strength lies in functional programming and vectorized operations, it also supports object-oriented programming (OOP). OOP allows you to organize code around objects that combine data and functions (methods) that operate on that data. R offers several OOP systems, each with different strengths and use cases.
10.1.1 S3 Classes
S3 is R's oldest and most informal OOP system. It relies on a concept called "generic functions" and "method dispatch." A generic function (like print(), summary(), or plot()) behaves differently depending on the class of its first argument.
How it works:
1. Generic Function: A function like print() is a generic. When you call print(my_object), R looks at the class of my_object.
2. Method Dispatch: R then searches for a method named print.class_of_my_object() (e.g., print.data.frame, print.factor).
3. Method Execution: If it finds a matching method, it executes that specific version of the function.
Defining an S3 Class and Method:
R
1. Create a regular list (or other data structure)
customer_feedback_summary <- list(
 customer_id = 105,
 avg_rating = 4.2,
 num_feedback = 10,
 most_common_source = "Web Form"
)

2. Assign a class attribute to the object
class(customer_feedback_summary) <- "feedback_summary"

3. Define a custom print method for this class
print.feedback_summary <- function(x, ...) {
 cat("--- Customer Feedback Summary ---\n")
 cat("Customer ID:", x$customer_id, "\n")
 cat("Average Rating:", round(x$avg_rating, 1), "\n")
 cat("Total Feedback Entries:", x$num_feedback, "\n")
 cat("Most Common Source:", x$most_common_source, "\n")
 cat("---------------------------------\n")
}

Now, when you print the object, the custom method is used
print(customer_feedback_summary)

You can still access its components directly
print(customer_feedback_summary$avg_rating)

Explanation:
S3 is flexible and easy to implement, especially for simple scenarios where you want to customize how objects are printed, summarized, or plotted. It doesn't enforce strict rules, making it quick to get started but potentially less robust for very complex systems.
10.1.2 S4 Classes
S4 is a more formal and rigorous OOP system introduced later. It provides stricter definition of classes (including slots for data and explicit inheritance) and methods (allowing multi-argument dispatch). S4 requires more upfront work but offers greater guarantees and encapsulation. It's often used in advanced statistical modeling packages.
Defining an S4 Class (Simplified):
R
Define the S4 class
setClass("CustomerReview",
 slots = c(
 customer_id = "numeric",
 rating = "numeric",
 comment = "character",
 timestamp = "POSIXct"
)
)

Create an instance of the S4 class
review_s4 <- new("CustomerReview",
 customer_id = 1011,
 rating = 4,
 comment = "Quick delivery!",
 timestamp = ymd_hms("2023-05-10 14:00:00")
)

Access slots using the @ operator
print(review_s4@comment)

Define a method for the S4 class (simplified example)
setMethod("show", "CustomerReview", function(object) {
 cat("--- Customer Review ---\n")
 cat("ID:", object@customer_id, "\n")
 cat("Rating:", object@rating, "\n")
 cat("Comment:", object@comment, "\n")
 cat("Timestamp:", as.character(object@timestamp), "\n")
 cat("-----------------------\n")
})

Printing the S4 object will now use the custom show method
show(review_s4)

Explanation: S4 classes define specific slots (variables) and their types, providing more structure and type safety than S3. Methods are defined for specific combinations of generic functions and class signatures.
10.1.3 R6 Classes
R6 is a newer OOP system that closely resembles OOP paradigms found in languages like Java or Python. It's built on encapsulated objects with reference semantics, meaning objects can be modified "in place" rather than creating copies, which can be important for performance with large objects.
R
library(R6)

Define an R6 class
CustomerFeedback <- R6Class("CustomerFeedback",
 public = list(
 customer_id = NULL,
 rating = NULL,
 comment = NULL,
 timestamp = NULL,

 initialize = function(id, rate, comm, ts) {
 self$customer_id <- id
 self$rating <- rate
 self$comment <- comm
 self$timestamp <- ts
 self # Return self for chaining
 },

 # Method to update rating
 update_rating = function(new_rating) {
 self$rating <- new_rating
 message(paste("Rating for ID", self$customer_id, "updated to", self$rating))
 self # Return self for chaining
 },

 # Method to print feedback details
 print = function(...) {
 cat("--- Customer Feedback (R6) ---\n")
 cat("ID:", self$customer_id, "\n")
 cat("Rating:", self$rating, "\n")
 cat("Comment:", self$comment, "\n")
 cat("Timestamp:", as.character(self$timestamp), "\n")
 cat("------------------------------\n")
 }
)
)

Create an instance of the R6 class
feedback_r6 <- CustomerFeedback$new(
 id = 1012,
 rate = 3,
 comm = "Initially okay.",
 ts = ymd_hms("2023-06-01 09:00:00")
)
feedback_r6$print()

Modify the object in place using a method
feedback_r6$update_rating(4)$print() # Chain methods

Explanation:
R6 classes define public and private members, methods, and an initialize method (constructor). They are invoked using the $ operator for methods and fields. The key difference is that R6 objects are modified by reference, making them behave more like objects in other traditional OOP languages.
The choice between S3, S4, or R6 depends on the specific needs of your project. S3 is great for simple, flexible customizations, S4 for more formal structure and type checking, and R6 when you need encapsulated objects with reference semantics.
[bookmark: _Toc203393968]10.2 Performance optimization and Rcpp
For computationally intensive tasks, R's interpreted nature can sometimes be a bottleneck. This section covers techniques to optimize R code, including using efficient programming practices and integrating C++ code via the Rcpp package for significant speedups.
10.2.1 Optimizing R Code
1. Vectorization: Always prefer vectorized operations over explicit for loops in R. R's built-in functions and tidyverse functions are often highly optimized for vectorization.
2. Apply Family & purrr: Use functions like lapply(), sapply(), vapply(), or the purrr equivalents (map(), map_df(), etc.) instead of for loops when iterating over lists or vectors.
3. Data Structures: Choose appropriate data structures. For example, data.table or tibble can sometimes offer performance advantages over base R data.frame for specific operations.
4. Avoid Unnecessary Copies: Be mindful of operations that create unnecessary copies of large objects, especially within loops. Modifying objects in place where possible or pre-allocating memory can help.
5. Profiling: Use R's profiling tools (Rprof() or the profvis package) to identify bottlenecks in your code before attempting optimization. Don't optimize until you know what to optimize.
10.2.2 Integrating C++ with Rcpp
Rcpp is a powerful package that allows seamless integration of C++ code into R, dramatically speeding up computationally intensive parts of your analysis. You write functions in C++ and expose them to R, leveraging C++'s speed while retaining R's convenience.
Example: Calculating Euclidian Distance (C++ vs. R)
Let's imagine a scenario where frequent calculation of the Euclidean distance between two points is needed, such as with customer geographical data or feature similarity.
R Version:
R
R function for Euclidean distance
euclidean_distance_R <- function(p1, p2) {
 sqrt(sum((p1 - p2)^2))
}

point_a <- c(1, 2, 3)
point_b <- c(4, 5, 6)
dist_R <- euclidean_distance_R(point_a, point_b)
print(paste("R Euclidean Distance:", round(dist_R, 2)))

Rcpp Version:
1. Create a C++ file: Create a new file (e.g., src/euclidean_distance.cpp) in your project's src folder. (If you don't have a src folder, create one).
2. Paste the C++ code:
cpp
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double euclidean_distance_rcpp(NumericVector p1, NumericVector p2) {
 int n = p1.size();
 double sum_sq_diff = 0;
 for (int i = 0; i < n; ++i) {
 sum_sq_diff += pow(p1[i] - p2[i], 2);
 }
 return sqrt(sum_sq_diff);
}

3. Source the C++ code in R:
R
library(Rcpp)
Source the C++ file (adjust path if needed)
sourceCpp("src/euclidean_distance.cpp")

Now you can use the Rcpp function
dist_rcpp <- euclidean_distance_rcpp(point_a, point_b)
print(paste("Rcpp Euclidean Distance:", round(dist_rcpp, 2)))

Performance Comparison:
R
library(microbenchmark)

Generate larger vectors for testing
long_point_a <- rnorm(1000)
long_point_b <- rnorm(1000)

Compare performance
benchmark_result <- microbenchmark(
 R_version = euclidean_distance_R(long_point_a, long_point_b),
 Rcpp_version = euclidean_distance_rcpp(long_point_a, long_point_b),
 times = 1000 # Run each function 1000 times
)
print(benchmark_result)

Explanation:
The [[Rcpp::export]] attribute makes the C++ function callable from R. NumericVector is an Rcpp type that handles R numeric vectors. Rcpp versions often run significantly faster, especially for tasks involving loops or element-wise calculations.
[bookmark: _Toc203393969]10.3 Connecting to external data sources
Beyond CSV files, R can connect to a wide array of external data sources like databases, web APIs, and even perform web scraping.
10.3.1 Databases
Connecting R to databases (e.g., SQL Server, PostgreSQL, MySQL, SQLite) is typically done using the DBI package along with specific database drivers (e.g., RSQLite, RMySQL, RPostgres).
Steps:
1. Install the driver package: install.packages("RSQLite")
2. Load DBI and the driver: library(DBI), library(RSQLite)
3. Establish connection: con <- dbConnect(RSQLite::SQLite(), dbname = "my_database.sqlite")
4. Query data: dbReadTable(con, "customers") or dbGetQuery(con, "SELECT * FROM customers WHERE rating > 4")
5. Write/Manipulate data: dbWriteTable(), dbExecute() (for SQL statements)
6. Disconnect: dbDisconnect(con)
R
Example using an in-memory SQLite database
library(DBI)
library(RSQLite)
library(tidyverse)

1. Connect to an in-memory SQLite database
con <- dbConnect(RSQLite::SQLite(), ":memory:")

2. Write our cleaned_feedback data frame to the database as a table
dbWriteTable(con, "customer_feedback", cleaned_feedback, overwrite = TRUE)

3. Query data from the database
Get all feedback from "Web Form" source
web_form_feedback <- dbGetQuery(con, "SELECT * FROM customer_feedback WHERE feedback_source = 'Web Form'")
print(web_form_feedback)

Get average rating per sentiment category
avg_rating_db <- dbGetQuery(con, "SELECT sentiment_category, AVG(rating) as mean_rating FROM customer_feedback GROUP BY sentiment_category")
print(avg_rating_db)

4. Disconnect from the database
dbDisconnect(con)

10.3.2 Web APIs (Application Programming Interfaces)
APIs provide structured ways to interact with web services and retrieve data (often in JSON or XML format). The httr package is excellent for making HTTP requests (GET, POST, etc.), and packages like jsonlite handle parsing the responses.
Steps:
1. Make an HTTP request: GET("https://api.example.com/data")
2. Check status code: status_code(response) (200 is success)
3. Extract content: content(response, "text")
4. Parse content: fromJSON(raw_content) (for JSON)
(Note: A live API example requires a specific API endpoint and credentials, which are beyond the scope of a general example. However, the httr and jsonlite packages are the primary tools.)
10.3.3 Web Scraping
Web scraping involves programmatically extracting data from web pages. The rvest package (part of the tidyverse) simplifies this process.
Steps:
1. Read HTML: read_html("https://example.com")
2. Select elements: html_nodes(webpage, "CSS selector")
3. Extract data: html_text(selected_elements) or html_attr(selected_elements, "attribute_name")
(Note: Ethical considerations and website terms of service are crucial when web scraping. Some sites may have APIs as a preferred way to access data.) Web scraping may also involve dynamic websites, which present their own challenges.
Wrap-up
This chapter propelled you into advanced R topics, equipping you with skills to tackle more complex programming challenges. You gained an understanding of R's Object-Oriented Programming systems (S3, S4, R6), allowing you to choose the right paradigm for your needs. You learned performance optimization techniques, including the use of Rcpp for integrating high-speed C++ code. Finally, you explored how R connects with the outside world, enabling interaction with databases via DBI and driver packages, web APIs using httr and jsonlite, and even performing web scraping with rvest. These advanced capabilities are essential for building scalable

[bookmark: _Toc203393970]Chapter 11: Reproducibility, Reporting, and Collaboration
In the world of data science, simply performing an analysis isn't enough. It's crucial that the work is reproducible (others can get the same results), reportable (insights are communicated clearly), and collaborative (can be easily shared and worked on with others). This chapter brings these essential aspects together using R Markdown for dynamic reporting and Git/GitHub for version control and collaboration.
[bookmark: _Toc203393971]11.1 Reproducible research with R Markdown
R Markdown is a powerful tool for creating dynamic documents that seamlessly blend narrative text, R code, and the output generated by the code (figures, tables, model summaries). When knitted, the document is processed by knitr, executing the embedded R code and embedding the results into the final output format. This ensures your analysis is fully reproducible – if the data or code changes, re-knitting the document updates everything automatically .
11.1.1 Introduction to R Markdown
An R Markdown file (.Rmd) is a plain text file that contains three main components:
1. YAML metadata: Defines document settings (title, author, output format).
2. Markdown text: Narrative text formatted with Markdown syntax (headings, bold, lists).
3. R code chunks: Blocks of R code that are executed when the document is knitted.
yaml

title: "Customer Feedback Analysis Report"
author: "Your Name"
date: "July 14, 2025"
output: html_document

R
A basic R Markdown example
(This code would be placed within an .Rmd file)

Introduction

This report presents an analysis of customer feedback data from our recent product launch.
Key metrics like average rating and sentiment distribution will be examined.

```{r setup, include=FALSE}
# This chunk runs code but doesn't show it in the output.
knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE)
library(tidyverse)
library(lubridate)
library(stringr)

# Load the cleaned_feedback data (assuming customer_feedback.csv is in your directory)
feedback_data_raw <- read_csv("customer_feedback.csv")

cleaned_feedback <- feedback_data_raw %>%
  mutate(
    comment = comment %>% str_trim() %>% str_to_lower()
  ) %>%
  replace_na(list(rating = 3)) %>%
  mutate(
    sentiment_category = case_when(
      rating >= 4 ~ "Positive",
      rating == 3 ~ "Neutral",
      rating < 3 ~ "Negative",
      TRUE ~ "Unknown"
    )
  ) %>%
  select(customer_id, timestamp, feedback_source, rating, sentiment_category, comment) %>%
  arrange(timestamp)

Overall Customer Sentiment
The average customer rating is r round(mean(cleaned_feedback$rating), 2).
This section visualizes the distribution of sentiment categories.
{r sentiment_bar_chart, fig.width=8, fig.height=5}
sentiment_plot <- cleaned_feedback %>%
  ggplot(aes(x = sentiment_category, fill = sentiment_category)) +
  geom_bar() +
  labs(
    title = "Distribution of Customer Sentiments",
    x = "Sentiment Category",
    y = "Number of Customers"
  ) +
  scale_fill_manual(values = c("Negative" = "firebrick", "Neutral" = "goldenrod", "Positive" = "darkgreen")) +
  theme_minimal()

print(sentiment_plot)

11.1.2 Code Chunks and Options
R code chunks are enclosed in backticks ( `` ). Options within the curly braces {}` control how chunks behave.
· echo=FALSE: Prevents R code from being shown in the output.
· eval=FALSE: Shows R code but prevents it from being executed.
· include=FALSE: Runs R code but prevents both the code and its output from appearing in the document.
· message=FALSE, warning=FALSE: Hides messages and warnings from the output.
· fig.width, fig.height: Controls the dimensions of generated plots.
· cache=TRUE: Caches the results of the chunk, speeding up subsequent knitting if the code hasn't changed.
11.1.3 Output Formats
R Markdown supports various output formats, including:
· HTML: Default, interactive documents.
· PDF: High-quality static documents (requires LaTeX installation).
· Word: Documents compatible with Microsoft Word.
· Presentations: ioslides, beamer, PowerPoint presentations.
· Dashboards: Using packages like flexdashboard.
· Websites and Books: Using packages like blogdown, bookdown.
Simply change the output field in the YAML metadata to render the document in a different format.
11.2 Version control with Git and GitHub
Version control is essential for tracking changes to code, collaborating with others, and ensuring the reproducibility of projects. Git is a popular version control system, and GitHub is a web-based hosting service for Git repositories that facilitates collaboration.
11.2.1 Setting up Git and GitHub with RStudio
1. Install Git: Download and install Git for your operating system .
2. Configure RStudio: Go to Tools > Global Options > Git/SVN in RStudio. Ensure Enable version control interface for RStudio projects is checked and that the path to the Git executable is correct.
3. Configure Git: Set your Git username and email address in your terminal or Git Bash.
bash
git config --global user.name "Your Name"
git config --global user.email "your.email@example.com"

4. Create a New RStudio Project with Git:
4. Go to File > New Project > New Directory > New Project.
4. Give your project a name and choose a directory.
4. Crucially, check the box that says Create a git repository.
11.2.2 Basic Git Workflow
1. Make Changes: Modify your .R scripts, .Rmd files, or any other project files.
2. Stage Changes: In the Git pane (usually top-right in RStudio), check the boxes next to the files you want to include in your next commit.
3. Commit Changes: Click the Commit button. A new window opens where you write a clear and concise Commit message describing the changes you made. Then click Commit. A commit creates a snapshot of your project at that point in time.
4. Push to GitHub: If your project is linked to a GitHub repository, click the Push button (green up-arrow icon) to upload your committed changes to the remote repository.
11.2.3 Collaborating with GitHub
1. Create a Repository on GitHub: Go to GitHub.com, create a new repository.
2. Clone the Repository (for collaborators): In RStudio, File > New Project > Version Control > Git. Paste the GitHub repository URL. This downloads a local copy of the repository.
3. Pull Changes: Before working, pull the latest changes from the remote repository to ensure your local copy is up-to-date. Click the Pull button (blue down-arrow icon).
4. Resolve Conflicts: If multiple people modify the same part of a file, Git will notify you of conflicts when you try to merge changes. You'll need to manually resolve these.
5. Issues and Pull Requests: Use GitHub's Issues feature to track bugs or tasks, and Pull Requests to propose and review changes before merging them into the main project branch.
11.2.4 Project Structure and Best Practices
· Organize Project Files: Keep data in a data/ folder, scripts in R/ or scripts/, figures in figures/, and reports in reports/.
· Use .Rproj files: RStudio projects bundle settings and the working directory, making it easy to share projects.
· .gitignore: Use a .gitignore file to prevent unnecessary or sensitive files (like raw data, large binaries, API keys) from being tracked by Git.
· R Markdown for Documentation: Use R Markdown for reports, analyses, and even your project's README.md file.
· Modularize Code: Break down complex tasks into smaller functions, stored in separate .R files.
· renv for Package Management: Consider using renv to create isolated, reproducible R environments for your projects, ensuring that everyone uses the exact same package versions.
· Knit Often: When working in R Markdown, knit frequently to catch errors early.
· Commit Often, Push Regularly: Small, frequent commits with descriptive messages are easier to manage than large, infrequent ones. Pushing regularly keeps the remote repository updated.
Wrap-up
This chapter solidified your journey towards becoming a proficient R user by focusing on three pillars: reproducibility, reporting, and collaboration. You learned how to leverage the power of R Markdown to create dynamic, reproducible reports and presentations, seamlessly integrating code, output, and narrative. Furthermore, you gained practical skills in using Git and GitHub for version control, enabling effective change tracking and collaborative development on your R projects. Mastering these tools ensures that your data analyses are not only insightful but also transparent, reliable, and easily shareable. This concludes the core chapters of "Mastering R: From Fundamentals to Real-World Solutions." The journey continues with applying these skills to your specific data challenges!


[bookmark: _Toc203393972]Chapter 12: Building Interactive Applications and Scalable Solutions
You've built a strong foundation in R, from data cleaning and analysis to reporting and version control. This chapter takes your skills to the next level by focusing on how to build interactive applications for broader audiences and how to handle increasingly large datasets. These topics are crucial for transitioning from personal data analysis to creating production-ready tools and working effectively with big data.
[bookmark: _Toc203393973]12.1 Building interactive web applications with Shiny
Interactive web applications allow users to explore data and analyses without needing R installed or knowledge of coding. Shiny is an R package that makes building these interactive applications simple and powerful. Tilburg Science Hub explains that Shiny allows users to create interactive dashboards, data visualizations, and reports without needing knowledge of HTML, CSS, or Javascript.
12.1.1 Introduction to Shiny and Reactivity
Every Shiny app has two main components:
1. User Interface (UI): Defines the layout and appearance of the application, including input controls (sliders, dropdowns) and outputs (plots, tables).
2. Server Function: Contains the R code that performs calculations, generates plots, and produces outputs based on user inputs.
The core concept in Shiny is reactivity, where changes in user input trigger updates only in the necessary parts of the application, ensuring dynamism and responsiveness.
12.1.2 A Simple Shiny App Example
The following code demonstrates a simple Shiny app that visualizes the distribution of customer ratings, allowing users to filter by feedback source:
R
library(shiny)
library(tidyverse)

# Assume 'cleaned_feedback' is loaded as in previous chapters
# For a standalone Shiny app, you'd typically load data inside the app or use a global.R file
feedback_data_raw <- read_csv("customer_feedback.csv") # Read in your CSV
cleaned_feedback <- feedback_data_raw %>%
  mutate(
    comment = comment %>% str_trim() %>% str_to_lower()
  ) %>%
  replace_na(list(rating = 3)) %>%
  mutate(
    sentiment_category = case_when(
      rating >= 4 ~ "Positive",
      rating == 3 ~ "Neutral",
      rating < 3 ~ "Negative",
      TRUE ~ "Unknown"
    )
  ) %>%
  select(customer_id, timestamp, feedback_source, rating, sentiment_category, comment) %>%
  arrange(timestamp)


# Define the User Interface (UI)
ui <- fluidPage(
  titlePanel("Customer Rating Distribution by Source"), # Application title
  sidebarLayout(
    sidebarPanel(
      selectInput(
        inputId = "source_filter", # Input ID to refer to in the server
        label = "Select Feedback Source:",
        choices = c("All", unique(cleaned_feedback$feedback_source)), # Options for dropdown
        selected = "All"
      )
    ),
    mainPanel(
      plotOutput("rating_histogram") # Output ID for the plot
    )
  )
)

# Define the Server Logic
server <- function(input, output) {

  # Reactive expression to filter data based on user input
  filtered_data <- reactive({
    if (input$source_filter == "All") {
      cleaned_feedback
    } else {
      cleaned_feedback %>%
        filter(feedback_source == input$source_filter)
    }
  })

  # Render the histogram plot
  output$rating_histogram <- renderPlot({
    filtered_data() %>% # Call the reactive expression
      ggplot(aes(x = rating, fill = sentiment_category)) +
      geom_histogram(binwidth = 1, color = "white") +
      labs(title = paste("Rating Distribution for", input$source_filter, "Feedback"),
           x = "Rating (1-5)",
           y = "Count") +
      scale_fill_manual(values = c("Negative" = "firebrick", "Neutral" = "goldenrod", "Positive" = "darkgreen")) +
      theme_minimal()
  })
}

# Run the application
shinyApp(ui = ui, server = server)

Explanation: The ui defines the layout with input and output elements, while the server function uses reactive expressions (reactive({}) and renderPlot({})) to dynamically filter data and update the plot based on user input. shinyApp(ui, server) launches the application.
12.1.3 Customizing and Deploying Shiny Apps
Shiny apps can be customized with CSS, HTML (using the htmltools package), and JavaScript. Deployment options include shinyapps.io, a private Shiny Server, or Docker containers.
12.2 Handling large datasets and distributed computing
Working with "big data" in R often requires strategies beyond loading entire datasets into memory.
12.2.1 Strategies for Large Datasets
Several strategies can be employed:
· Efficient File Formats: Use formats like Parquet or Feather with the arrow package.
· Chunking/Streaming Data: Process data in smaller pieces using packages like data.table and readr.
· Database Backends: Store data in databases (e.g., PostgreSQL, DuckDB) and use dplyr with dbplyr to perform computations within the database.
· Specialized Packages: Utilize data.table for fast in-memory manipulation, disk.frame for out-of-memory data, and arrow for interoperable large dataset handling.
12.2.2 Distributed Computing with R
For processing data across multiple machines, R can integrate with distributed computing frameworks:
1. SparkR and sparklyr: These packages provide R interfaces to Apache Spark. sparklyr offers a dplyr-like syntax for working with Spark.
R
# Example using sparklyr (requires a Spark installation/connection)
# library(sparklyr)
# library(dplyr)

# # Connect to a local Spark instance (or a remote cluster)
# sc <- spark_connect(master = "local")

# # Copy cleaned_feedback data to Spark
# feedback_spark <- copy_to(sc, cleaned_feedback, "feedback_spark", overwrite = TRUE)

# # Perform dplyr-like operations on Spark data (executed on Spark)
# avg_rating_spark <- feedback_spark %>%
#   group_by(sentiment_category) %>%
#   summarize(mean_rating = mean(rating, na.rm = TRUE)) %>%
#   collect() # Bring results back to R

# print(avg_rating_spark)

# # Disconnect from Spark
# spark_disconnect(sc)

Explanation: sparklyr translates dplyr code into Spark operations, allowing computation on large datasets without loading them into R's memory. collect() retrieves summarized results.
0. Parallel Processing: The parallel package or foreach with doParallel can be used to speed up independent tasks on multi-core machines.
R
# Example: Using parallel processing to simulate multiple analyses
# (This is illustrative; actual speedup depends on task complexity and number of cores)

library(parallel)

num_cores <- detectCores() - 1 # Use all but one core
cl <- makeCluster(num_cores) # Create a cluster

# Perform a simulated analysis in parallel
results <- parLapply(cl, 1:5, function(i) {
  # Simulate some heavy computation
  Sys.sleep(1) # Pause for 1 second
  mean(rnorm(1000 * i))
})

print(results)

# Stop the cluster
stopCluster(cl)

Wrap-up
This final chapter introduced building interactive web applications with Shiny and handling large datasets through strategies like efficient file formats, database backends, and distributed computing with sparklyr. These skills are essential for creating production-ready tools and working with big data.
Congratulations on completing "Mastering R: From Fundamentals to Real-World Solutions." Continue practicing, exploring new packages, and engaging with the community to further your expertise!


[bookmark: _Toc203393974]Appendix A: R and RStudio Quick Reference
This appendix provides a quick reference for common R commands and RStudio features discussed throughout the book.
[bookmark: _Toc203393975]A.1 RStudio Interface Panes
· Source Pane (Top-Left): Code editor for writing and saving scripts (.R, .Rmd).
· Console Pane (Bottom-Left): Where R commands are executed, and output is displayed.
· Environment/History Pane (Top-Right): Lists active objects (variables, data frames) and command history.
· Files/Plots/Packages/Help Pane (Bottom-Right): Navigation, plot display, package management, and help documentation.
[bookmark: _Toc203393976]A.2 Basic R Commands
	Command
	Description
	Example

	<- or =
	Assignment operator
	x <- 5

	#
	Comment
	# This is a comment

	print()
	Displays output to the console
	print("Hello")

	c()
	Combines values into a vector
	my_vector <- c(1, 2, 3)

	library()
	Loads an installed package into the session
	library(tidyverse)

	install.packages()
	Installs a package from CRAN
	install.packages("ggplot2")

	?function_name or help()
	Access help documentation for a function
	?mean or help(mean)

	rm()
	Removes objects from the environment
	rm(my_variable)

	ls()
	Lists objects in the current environment
	ls()

	class()
	Determines the class (type) of an object
	class(my_vector)

	str()
	Displays the structure of an object (useful for data frames)
	str(my_data_frame)

	head() / tail()
	View the first/last few rows of a data frame
	head(my_data_frame)


[bookmark: _Toc203393977]A.3 dplyr Verbs Reference
	dplyr Verb
	Description
	Example

	filter()
	Selects rows based on conditions
	df %>% filter(rating > 3)

	select()
	Selects or deselects columns
	df %>% select(customer_id, rating)

	mutate()
	Creates new columns or modifies existing ones
	df %>% mutate(is_high = rating >= 4)

	arrange()
	Reorders rows by columns
	df %>% arrange(year, desc(rating))

	group_by()
	Groups data by categorical variables
	df %>% group_by(feedback_source)

	summarize()
	Summarizes grouped data into single rows
	df %>% summarize(avg_rating = mean(rating))

	%>% (pipe)
	Passes output of one function as input to the next
	df %>% filter(...) %>% select(...)


[bookmark: _Toc203393978]Appendix B: Common R Errors and Troubleshooting
Encountering error messages is a normal part of programming. This section outlines some of the most common R errors and strategies for resolving them. blog.revolutionanalytics.com shares the most common R error messages, including "could not find function", "Error in if", "Error in eval", and "subscript out of bounds". The Epidemiologist R Handbook discusses common R errors and potential solutions, such as typo errors, package errors, and issues with using the wrong data file.
[bookmark: _Toc203393979]B.1 "could not find function "X""
· Cause: You are trying to use a function (e.g., ggplot, filter) from a package that has not been loaded into the current R session. Or, there's a typo in the function name.
· Solution: Use library(package_name) to load the necessary package. Double-check the function's spelling.
[bookmark: _Toc203393980]B.2 "Error in filter(...): object 'X' not found" or "object 'X' not found"
· Cause: You're referencing a variable or object that either doesn't exist in your current environment, or you're trying to use it in a context where it's not visible (e.g., dplyr verbs acting on a column name that doesn't exist in the data frame).
· Solution: Check the spelling of the variable. Ensure the data frame has the column you're trying to access (names(my_data_frame)). If inside a function, review scoping rules.
[bookmark: _Toc203393981]B.3 "Error: data must be a data frame, or other object coercible by fortify(), not a numeric vector"
· Cause: You're passing the wrong type of data to a function that expects a data frame, vector, or other specific type. For example, trying to use ggplot() on a simple vector instead of a data frame.
· Solution: Check the function's documentation to see the expected input type. Ensure your data is in the correct format (e.g., use as.data.frame() or as_tibble() if needed).
[bookmark: _Toc203393982]B.4 "Error: unexpected 'token' in 'code'"
· Cause: Syntax error. Missing parenthesis, bracket, quote, or a stray character.
· Solution: Carefully check the line of code indicated (and often the line just before it) for unmatched symbols. RStudio's syntax highlighting and auto-completion can help.
[bookmark: _Toc203393983]B.5 "Error in [.data.frame(data, , variable) : undefined columns selected"
· Cause: Attempting to select a column by name that does not exist in the data frame using base R subsetting ([]).
· Solution: Verify the column name spelling. Use names(my_data_frame) to see available columns.
[bookmark: _Toc203393984]B.6 "Error in file(file, "rt") : cannot open the connection"
· Cause: R cannot find the file you're trying to read. Common causes include typos in the filename/path or the file not being in the current working directory.
· Solution:
. Verify the filename and extension.
. Ensure the file is in your RStudio project's working directory (getwd()).
. Use an absolute path or navigate to the correct working directory (setwd("path/to/directory") - though relying on RStudio projects is generally better).
. Ensure the file isn't open and locked by another program (like Excel).
[bookmark: _Toc203393985]B.7 "Error: removed X rows containing non-finite values (stat_bin)." (or similar warnings)
· Cause: This is often a warning, not an error. Functions, especially plotting functions, may remove rows containing NA (missing) values or NaN (Not a Number) values by default when performing calculations or plotting.
· Solution:
. Understand if these missing values are expected.
. Use na.rm = TRUE in functions like mean() or sum() to exclude NAs.
. Use filter(!is.na(column_name)) to remove rows with NAs in specific columns.
. Use replace_na() to fill NAs with a specific value (see Chapter 5).
. Use drop_na() to remove rows with NAs (see Chapter 5).
[bookmark: _Toc203393986]Appendix C: Recommended R Packages for Further Exploration
This book covered the foundational R packages essential for data science. However, the R ecosystem is vast, with thousands of specialized packages available on CRAN and GitHub. Here are a few recommendations to expand your toolkit. GitHub Pages recommends `adv-r.hadley.nz` for sharpening programming skills in R.
· Data Manipulation & Transformation:
. data.table: A high-performance package for data manipulation, particularly efficient for large datasets.
. janitor: Provides functions for cleaning dirty data (e.g., standardizing column names, removing empty rows).
. duckdb: An in-process SQL OLAP database that integrates seamlessly with R, allowing efficient SQL queries on large datasets without needing a separate database server.
· Data Visualization:
. plotly: Creates interactive web-based graphs, allowing users to hover over points, zoom, and pan.
. ggiraph: Makes ggplot2 graphics interactive, supporting tooltips, zooming, and click actions.
. leaflet: For creating interactive maps.
· Statistical Modeling:
. tidymodels (collection of packages like parsnip, recipes, tune, yardstick): A meta-package for tidying and streamlining machine learning workflows.
. caret: Provides a unified interface for many machine learning models and data preprocessing steps.
. lme4: For fitting linear and generalized linear mixed-effects models.
· Text Analysis:
. quanteda: A powerful and efficient framework for quantitative text analysis.
. tidytext: Integrates text mining with tidyverse principles for easy manipulation and analysis of text.
· Reproducibility & Reporting:
. bookdown: Creates books and long-form documents from R Markdown files.
. blogdown: Builds websites and blogs using R Markdown.
. flexdashboard: Easily creates interactive dashboards from R Markdown.
. renv: Manages project-specific R environments, ensuring reproducibility across different systems.
· Performance:
. profvis: An interactive tool for profiling R code to identify performance bottlenecks.
[bookmark: _Toc203393987]Appendix D: Glossary of Key Terms
· Aesthetics (aes()): In ggplot2, the visual properties of a plot (e.g., x-position, y-position, color, size) mapped to data variables.
· Anonymous Function: An unnamed function defined and used inline, often for simple, single-use tasks.
· ANOVA (Analysis of Variance): A statistical test used to compare the means of three or more groups.
· Atomic Vector: The simplest R data structure, holding multiple elements of the same data type.
· Class: An attribute of an R object that determines how generic functions (like print()) will behave when applied to it.
· Coercion: The automatic or explicit conversion of data from one type to another (e.g., numeric to character).
· Console Pane: The area in RStudio where R commands are executed and output is displayed.
· CRAN (Comprehensive R Archive Network): The primary repository for R packages.
· Data Frame: A tabular R data structure where columns can hold different data types, but all elements within a column must be of the same type. Rows represent observations, columns represent variables.
· dplyr: A tidyverse package providing a grammar for data manipulation.
· Environment: A collection of named objects (variables, functions). Every R session and function call has an associated environment.
· Factor: An R data type used to store categorical data with predefined levels.
· geom_ (Geometrics): In ggplot2, the visual markers used to represent data (e.g., geom_point for scatter plots, geom_bar for bar charts).
· Git: A distributed version control system for tracking changes in source code during software development.
· GitHub: A web-based platform for hosting Git repositories, facilitating collaboration.
· Global Environment: The default environment in an R session where user-defined objects reside.
· ggplot2: A tidyverse package for creating data visualizations based on the Grammar of Graphics.
· knitr: An R package that processes R Markdown documents, executing code chunks and embedding results.
· Lexical Scoping: R's rule for resolving variable names, based on where a function was defined, not where it was called.
· List: An R data structure that can hold elements of different data types (including other lists or data frames).
· lubridate: An R package for simplifying date and time manipulation.
· magrittr (%>% pipe operator): Facilitates chaining operations by passing the output of one function as the input to the next.
· NA (Not Available): R's representation for missing values.
· Package: A collection of R functions, data, and documentation that extends R's capabilities.
· readr: A tidyverse package for fast and user-friendly import of rectangular data.
· Reactivity: The core concept in Shiny where changes in inputs automatically trigger updates in outputs.
· Reproducible Research: An approach to research that ensures others can replicate results using the same code, data, and environment.
· Rcpp: An R package for seamlessly integrating C++ code into R for performance optimization.
· R Markdown: A file format for creating dynamic documents that combine narrative text, R code, and generated output.
· Shiny: An R package for building interactive web applications.
· Source Pane: The RStudio editor where R scripts are written and saved.
· S3 / S4 / R6 Classes: R's different object-oriented programming systems.
· stringr: A tidyverse package for consistent and intuitive string manipulation.
· T-test: A statistical test used to compare the means of two groups.
· tibble: A modern, tidyverse-friendly alternative to data.frame, with improved printing and subsetting behaviors.
· tidyr: A tidyverse package for tidying data, primarily with pivot_longer() and pivot_wider().
· tidyverse: A collection of R packages designed for data science, sharing a common design philosophy and making data analysis more intuitive.
· Vectorization: Performing operations on entire vectors at once in R, often leading to much faster code execution than loops.
· Version Control: A system (like Git) for tracking and managing changes to files over time.
· Working Directory: The default location where R looks for files to read and saves files it creates.

2 | Page

image1.png
i

\\\

a\\





